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Abstract. Layer-2 (L2) blockchains inherit Ethereum’s security guar-
antees while reducing gas fees. As a result, they are gaining traction
among traders at Automated Market Makers (AMMs), sparking debate
over whether they contribute to liquidity fragmentation of Ethereum.
Our research suggests that such fragmentation is not currently occur-
ring. However, it could emerge in the future—particularly if Liquidity
Providers (LPs) recognize the higher returns available on L2s. Using
Lagrangian optimization, we develop a model for optimal liquidity
allocation across AMMs on Ethereum and its L2s, using staking as a
benchmark. We show that, in equilibrium, AMM liquidity provision
returns converge to this reference rate. Additionally, we measure
the elasticity of trading volume with respect to Total Value Locked
(TVL) in AMMs and find that, on well-established blockchains, an
increase in TVL does not necessarily lead to higher trading volume.
Finally, our empirical findings reveal that Ethereum’s liquidity pools are
oversubscribed compared to those on L2s and often yield lower returns
than staking Ether. LPs could maximize their rewards by reallocating
more than two-thirds of their liquidity to L2s and staking.

1 Introduction

Automated Market Makers (AMMs) [36], pioneered by Uniswap on Ethereum
in 2018 [4], are the foundation of Decentralized Exchanges (DEXs). DEXs en-
able token exchanges without counterparty risk in an atomic blockchain trans-
action [14]. They were originally introduced to avoid the inefficiencies of the
on-chain order book associated with high on-chain storage costs and security
vulnerabilities [21]. At AMM-DEX, exchange rates are set by a conservation
function and current token reserves in the AMM pool. Liquidity Providers (LPs)
supply tokens, earning trading fees paid by traders. As a result, a higher trad-
ing volume results in increased fees, which are subsequently distributed among
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LPs. Furthermore, a higher Total Value Locked (TVL) in liquidity pools at-
tracts traders by reducing price impact during swaps, a primary cost component
incurred during swap transactions [3].

Nevertheless, it is not always the optimal strategy for LPs to allocate their
liquidity to the AMM pools with the highest trading volume. The trading fees
accrued from traders are distributed among LPs in proportion to their re-
spective contributions to the pool’s TVL. Therefore, it is the ratio of fees to
TVL, often referred to as capital efficiency, that should be the primary con-
sideration for LPs. LPs must also carefully select token pairs in the AMM
pools. Volatile crypto-currency pairs lead to impermanent loss, reducing LP
rewards [18]. Arbitrageurs equalizing token prices across AMM-DEXs, or with
Centralized Exchanges (CEXs) amplify LPs’ losses from market movement [25].
The Loss-Versus-Rebalancing (LVR) metric measures LP rewards relative to ar-
bitrageurs [25]. Finally, should the rewards from liquidity provisions fall below
those achieved by staking ETH, which is widely regarded the safest token allo-
cation to yield rewards [13], the rationale behind the liquidity provision becomes
questionable. The Loss-Versus-Staking metric compares LP returns to staking
rewards [13].

The advent of rollups, a Layer-2 (L2) scaling solution [31], has shifted DeFi
activities from Ethereum to its rollups. The success of rollups lies in their data
integrity, which is secured by staked ETH, and the significant reduction in gas
fees achieved by offloading computations off-chain [30,12]. After the Ethereum
Dencun upgrade in March 2024, the swap fees on L2s have dropped below $0.01
per transaction. Consequently, the volume of swap transactions on rollups has
surpassed that on the Ethereum mainnet, albeit with lower trading volumes. The
reduced gas fees on rollups have facilitated transactions within the $1-$10 range,
a previously unfeasible scenario on Ethereum. Furthermore, most rollups support
the Ethereum Virtual Machine (EVM), allowing for the seamless deployment
of AMM-DEXs originally designed for Ethereum onto rollups. Currently, DEXs
such as Uniswap, Curve, and their forks have been deployed on rollups, enhancing
the diversity of AMM pools accessible to LPs. As a result, LPs have more options
to consider for providing liquidity, which serves as the starting point for this
research.

Faster block production in rollups, along with cheaper gas fees, impacts
the strategies of LPs in L2s. While Ethereum produces blocks every 12 sec-
onds, rollups do it in 0.2 to 2 seconds depending on their implementation. The
cheaper gas fees and faster block production allow LPs to adjust their strategies
more often, which is especially vital for Concentrated Liquidity Market Makers
(CLMM) such as Uniswap (v3) [2]. With more frequency LP-position rebalancing
in CLMMs, LPs earn higher rewards compared to similar pools on Ethereum.

This study investigates liquidity provision to AMM pools on L2s and
Ethereum. After developing the theoretical framework for optimal liquidity allo-
cation within the same cryptocurrency pools, we analyze our results using em-
pirical on-chain data. We show that providing liquidity to certain AMM pools on
rollups is more profitable compared to Ethereum. Despite the fact that liquidity
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pools on Ethereum have higher trading volumes, they often become oversub-
scribed, diminishing the rewards for LPs.
Related Work. A comprehensive review of major AMM categories has been
made available in [36] and expanded and updated in [29]. The empirical study of
liquidity provisions to AMMs has primarily focused on the Ethereum blockchain,
especially for Uniswap (v2) [19] and Uniswap (v3) [10,18,24,27,26]. These in-
vestigations emphasize impermanent loss as a key indicator for assessing LP
profitability across different cryptocurrency pairs. Furthermore, Tiruviluamala
et al. [33] proposed a framework to address impermanent loss, a major risk for
LPs.

Alternative metrics for comparing LP profitability include LVR and LVS. Mil-
ionis et al. [25] compared LP rewards with arbitrage using loss-versus-rebalancing
(LVR), while Fritsch and Canidio [11] extended its empirical analysis to more
pools and showed that arbitrage profit increases on faster blockchains. Gogol et
al. [13] introduced loss-versus-staking (LVS) as another comparative measure,
evaluating LP returns against staking rewards. Yaish et al. [37] demonstrated
the suboptimal behavior of LPs in DeFi lending pools.

Research on AMMs on L2s is nascent, focusing mostly on MEV and arbitrage.
Torres et al. [34] reported on cycling arbitrage (MEV) within L2s, while Gogol
et al. [16,15] examined non-atomic arbitrage involving cross-rollup and L2-CEX.
In his pioneering work, Adams [2] observed that the liquidity concentration at
Uniswap (v3) on Arbitrum and Optimism surpasses that on Ethereum by 75%,
indicating that LPs often readjust their positions on L2s. Chemaya and Liu [7]
estimated AMM traders preferences for blockchain security on two main L2
networks in comparison to Ethereum.
Contribution. This research analyzes both empirically and theoretically the
liquidity provision for AMMs on L2s. We assess LP rewards on Uniswap (v3)
within Ethereum and its optimistic rollups (Arbitrum, Base, Optimism), and
ZK rollups (ZKsync). The contributions of this work are as follows:

– Using Lagrangian optimization, we find the optimal allocation of liquidity
across staking and AMMs pools on Ethereum and its rollups, with the ob-
jective of maximizing LP rewards. We further show that in equilibrium,
liquidity provisions to AMMs should provide returns equal to risk-free rate
across all blockchains.

– We measure the elasticity of trading volume with respect to TVL at AMM
pool and found that at the well established blockchains — Ethereum, Ar-
bitrum and Optimism, contrary to expectations, an increase in TVL is
not associated with an increase in trading volume. In contrast, emerging
blockchains, Base and ZKsync, exhibit a positive elasticity value, indicating
that the volume of trade is positively correlated with TVL on these chains.

– We empirically find that the current allocation of liquidity to WETH-USDC
pools of Uniswap (v3) on Ethereum and rollups is not optimal for LPs. The
pool on Ethereum tend to be overcapitalized and does not compensate LP
for the missed opportunity to stake the entire capital. Specifically, over 66%
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of Ethereum liquidity should be reallocated to rollups in order to maximize
LP returns and to attain equilibrium with staking rates.

2 Background on Layer-2s

According to the blockchain scalability trilemma [28], blockchains can prioritize
only two of three: decentralization, security, or scalability. Ethereum, the main
platform for DeFi with the highest TVL, prioritizes decentralization and secu-
rity. This led to network congestion, high gas fees, and throughput limited to
12 transactions per second (TPS). The Layer 1 (L1) and Layer 2 (L2) scaling
solutions address blockchain scalability. L1 scaling involves the development of
new blockchains with novel consensus mechanisms [23], sharding [35], and their
own physical infrastructure. In contrast, in L2 scaling intensive computations
are executed off-chain, with their results being recorded on the underlying L1
blockchain [30,12].
Rollup. Rollups [32], the non-custodial form of L2 scaling, act as blockchains.
They generate blocks, execute transactions, and subsequently record compressed
batched data on the L1. This approach ensures that the integrity of the rollup
data is guaranteed by L1 security, such as staked ETH in the case of Ethereum’s
rollups. In order to maliciously modify the rollup state history, an attacker must
compromise the security of the underlying L1 network.
Sequencer. A sequencer [5] is an integral component of rollup, tasked with
executing and ordering transactions, forming blocks, and creating batches that
are uploaded to the L1 chain. By bundling transactions together, rollups pro-
vide more gas-efficiency compared to the L1 network. To avoid additional trust
assumptions in sequencer operators, rollups use optimistic or zero-knowledge
proofs (ZKPs) to ensure the correctness and integrity of the data. Fig. 1
illustrates the architecture of optymistic and ZK-rollups. Presently, major
Ethereum optimistic rollups (e.g., Arbitrum, Optimism, Base) and ZK-rollups
(e.g., ZKsync, StarkNet) rely on centralized sequencers and, in the case of ZK-
rollup, centralized provers.
Optimistic Rollup. Optimistic rollups [22] operate on a trust-based system,
assuming transactions are valid unless disputed. This approach simplifies the
implementation of optimistic rollups, particularly in supporting the Ethereum
Virtual Machine (EVM). Consequently, optimistic roll-ups were faster to launch
EVM compatibility and attracted higher DeFi adoption. However, the optimistic
fraud-proof mechanism can lead to delays in withdrawals. Currently, most opti-
mistic rollups enforce a 7-day challenge period.
ZK-Rollup. In contrast, ZK-rollups [6] leverage ZKPs to validate the state
on L1 immediately after a proof has been generated off-chain by provers and
submitted to verifiers. Verifiers, smart contracts on L1, validate transactions
aggregated by the sequencer and confirm their correctness. Consequently, rapid
finality is ensured, albeit for increased computational costs. ZK-rollups also offer
enhanced compression opportunities, e.g. by posting to L1 only ZKPs instead of
all transaction data.
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Fig. 1: High-level architecture of rollups

3 Model

Our model comprises n blockchains: Ethereum and its rollups. Each blockchain
has an identical AMM deployed with the liquidity pool of the same two cryp-
tocurrencies and the same configuration.

– Each liquidity pool i has a different TVLi and trading volume Voli. The
trading fees f are the same for each pool, and the total fees of the pool
earned by LP are feesi := f · Voli.

– Each liquidity pool i consists of the same tokens and consequently has the
same impermanent loss (IL).

– Blockchains vary in gas fees and block production times.

In our model, we also consider that LPs have the possibility to stake and earn
the staking rewards r. We consider the staking rate rs to be similar to the
risk-free rate in traditional finance. Consequently, we assume that if liquidity
pools do not provide higher rewards than the staking rs, the LP reallocates her
wealth to staking. Given that, within the Ethereum ecosystem, the volume of
capital allocated to staking vastly exceeds that which is locked within liquidity
pools [17], we assume that the staking rate remains unaffected by staked capital
in our model.

3.1 Constant Product Market Maker

Liquidity provider aims to optimize her earnings, which are directly related to the
capital wi she contributes to the liquidity pool on blockchain i with total value
locked TVLi and total fees earned feesi. The earnings for LP are calculated as
follows:

wi

TVLi + wi
feesi =

wi

TVLi + wi
f · Voli (1)

Thus, the return rate of LP on fees for allocating wi capital to the liquidity pool
on blockchain i is:
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ri(wi) =
f · Voli

TVLi + wi
(2)

Returns, as presented by DEX aggregators and the GUI of AMM-DEX, are ri(0).
In order to calculate the LP return, impermanent loss (IL) must be deduced from
ri(0).

3.2 Concentrated Liquidity Market Maker (CLMM)

Uniswap (v3) enables LPs to define the price range within which liquidity is
supplied, thereby enhancing capital efficiency. Consequently, LPs accrue fees
solely on the capital allocated to the specific tick where swaps occur. To compare
the ETH-USDC pools on Uniswap (v3) across Ethereum and its rollups, each
with its unique liqudity concentrations, we evaluate the profitability per unit
of ambient (unbounded) liquidity and seek equilibrium conditions that equalize
their returns.

Thus, the return of LP for allocating wi capital (unbounded) to the pool on
the blockchain i is the following:

ri(wi) =
f · Voli

TVLj
i +

wi

m

. (3)

where TVLj
i is the liquidity in the current tick j and m is the number of ticks

3.3 Optimal Allocation

Assume there is one LP. We denote by w0 the amount of capital allocated to
staking at the staking rate rs and for i = 1, . . . , n we denote wi as the capital
allocated to liquidity pool i. We are looking for a vector w = (w0, w1, . . . , wn)
that maximizes LP’s earnings. We assume that the LP has total liquidity W to
allocate to staking and AMM pools. By allocating w0 to staking, the return from
staking is rsw0.

Given an allocation vector w, the total earnings for the LP are rsw0 +∑n
i=1 ri(wi)wi. The LP’s objective is to maximize his earnings, that is, she faces

the following optimization problem (using Equation (2)):

max
w=(w0,...,wn)

rsw0 +

n∑
i=1

wi

TVLi + wi
f · Voli (4)

subject to wi ≥ 0 for each i = 0, . . . , n and
∑n

i=0 wi = W .
Incorporating impermanent loss into the above model can easily be done

by increasing the reference rate rs with the rate of impermanent loss, as each
liquidity pool incurs an equal impermanent loss.
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Proposition 1. The allocation vector w = (w0, . . . , wn) with

wi = TVLi(

√
ri(0)r

−1
s − 1), i = 1, . . . , n (5)

and w0 = W −
∑n

i=1 wi is the solution to (4) and maximizes LP’s earnings.

Proof. We define the Lagrangian L(w, λ) = rsw0 +
∑n

i=1
f ·Voli

TVLi+wi
wi +

λ (W −
∑n

i=0 wi) where wi ≥ 0 and
∑n

i=0 wi = W . Taking the derivatives with
respect to w0, wi, and λ, and solving yields the optimal conditions (5). ⊓⊔

3.4 Convergence

Assume now that there are m independent and identical LPs that invest into the
staking and AMMs consecutively. Each action of an LP changes the return rates
of the AMMs. Based on these changes other LPs will take action accordingly.
In particular, an allocation of capital to a pool increases its TVL and thereby
decreases the rate of return, see Equation (2). If LPs allocate their capital con-
secutively, the rate of return of each pool will decrease until it reaches rs. Once
each pool reaches rs, the remaining LPs will invest into staking. Formally, we
have the following convergence result. Let rji be the rate of return for pool i,
after j − 1 LPs have invested their capital. Note that after each investment by
an LP, the respective pool’s TVLs increase by that amount.

Proposition 2. Assuming m LPs that consecutively invest into the staking and
AMMs following (5). The rate of return from each pool converges to the staking
rate rs. In particular, rmi (0)

m→∞→ rs for all i = 1, . . . , n.

Proof. LPs and let the LPs invest consecutively. The rate of return can be sim-

plified using Proposition 1. In particular, rji (w
j
i ) =

√
rj−1
i (0)

√
rs Note that the

latter is independent of wj
i and the convergence result follows j = m. ⊓⊔

Example 1. We illustrate in Fig. 2 and Fig. 3 the convergence result from Prop. 2
for one AMM and m = 8 LPs. We assume a given wealth of W = 10′000′000
per LP, a staking rate of rs = 3.42%, a fee value f = 1, Vol = 400′000 and
TVL = 4′000′000. The LPs sequentially allocate their funds to the AMM and/or
to staking.

3.5 Modeling Volume Dynamics

We introduce a parameter for volume elasticity [20], denoted by ϵv. The elasticity
parameter captures how sensitive trading activity is to changes in liquidity. The
trading volume follows the functional form

Vol = k · TVLϵv , (6)

where k is a scaling constant. This form is particularly motivated because deeper
liquidity pools (i.e. pools with higher liquidity) reduce price impact and slippage,
incentivizing larger trades.
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Fig. 2: Optimal allocation for each LP
(sequential allocation).

Fig. 3: Rate of return of the AMM
converges to the staking rate rs

– ϵv > 1: Highly elastic volume, where trading activity increases significantly
as liquidity grows.

– ϵv ≤ 1: Inelastic volume, where trading volume grows slower than liquidity.

Following the previously introduced notation, the LP’s objective is to maximize
their earnings:

max
w=(w0,...,wn)

rsw0 +

n∑
i=1

f · ki · (TVLi + wi)
ϵv−1wi (7)

subject to wi ≥ 0 for each i = 0, . . . , n and
∑n

i=0 wi = W . Note that we replaced
Voli with (6), considering that the LP’s contribution wi to pool i must be added
to TVLi.

Proposition 3. The allocation vector w = (w0, w1, . . . , wn) which solves

wi =

(
rs

fki(TVLi + ϵvwi)

) 1
ϵv−2

− TVLi, i = 1, . . . , n, (8)

and w0 = W −
∑n

i=1 wi, is the solution to the optimization problem (7) and
maximizes LP’s earnings. For wi small with respect to TVLi, the above equation
can be approximated:

wi ≈
(

rs
fkiTVLi

) 1
ϵv−2

− TVLi, i = 1, . . . , n. (9)

Proof. The proof is included in Appendix A.

The optimal allocation can be numerically calculated using (8). An approximate
result for small wi is given in (9).



Automated Market Makers Across Ethereum and Rollups 9

Convergence. Assume m identical independent LPs invest sequentially into stak-
ing and AMM pools. An allocation of capital to a pool increases its TVL and
reduces the rate of return. The rate of return for pool i after j − 1 LPs have
invested is given by:

rji (w
j
i ) = f · ki · (TVLj−1

i + wj
i )

ϵv−1. (10)

Proposition 4. For ϵv < 1, the return from each pool converges to the staking
rate rs as m → ∞. That is, rmi (wm

i ) → rs as m → ∞ for all i = 1, . . . , n.

Proof. As LPs invest sequentially, the TVL for each pool increases, which de-
creases the marginal return rji (w

j
i ) in (10). When rji (w

j
i ) ≤ rs, no rational LP

will add more liquidity to that pool, preferring staking instead. Thus, the return
from all AMM pools stabilizes at rs in the limit m → ∞.

Note that if ϵv > 1, increasing TVL increases the return instead of reducing
it. As more LPs enter, trading volume scales more than liquidity, leading to in-
creasing LP rewards rather than convergence to rs. This creates a self-reinforcing
effect, where AMM pools can keep attracting liquidity as returns remain high,
contradicting the equilibrium assumption. This implies that LPs should always
prefer AMM liquidity over staking when ϵv > 1, as staking will always yield
lower returns. For ϵv = 1, the rates of return are constant for each pool.

4 Empirical Analysis

Data. For our empirical analysis, we focus on the WETH-USDC pools on
Uniswap v3, as they exhibit the highest trading volume and TVL. Additionally,
we always examine the WETH-USDC pool on Ethereum and across each L2
to ensure that all LPs are exposed to the same market risks. We collect on-
chain data for every swap in these pools, covering the period from 2023 to the
first half of 2024. The analysis includes Ethereum and its EVM-compatible L2s,
specifically optimistic rollups such as Arbitrum, Optimism, and Base, as well as
a ZK-rollups — ZKsync. For Arbitrum, we analyze pools with native USDC and
bridged USDC.e against WETH. The Arbitrum pool with bridged USDC.e we
further denote as Arbitrum (e). LP fee in these pools is 5bps, with the exception
of ZKsync pool with 20bps. The trading volume in these pools is shown in
Figure 4a.
Methodology. For each day and each pool, we find the last swap and, based
on the liquidity and current tick, we calculate TVL in the current tick, shown
in Figure 4b. Then, we calculate the returns of the AMM pool based on the
TVL in the current tick using Equation (3) and the optimal allocation using
Equation (5). We also assume that the LP provides liquidity in ticks around 12%
of the current spot price and, based on the finding of Adams [2], the liquidity
concentration is 75% higher on L2s compared to Ethereum. The annualized
return of such LP position is depicted in Figure 4c.
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(a) Daily Trading Volume. (b) TVL in the Current Tick.

(c) LP Return. (d) Liquidity Reallocation.

Fig. 4: Overview of WETH-USDC liquidity pools on Uniswap (v3) across Ethereum
and its rollups: trading volume, TVL in the current tick and LP returns. The last
chart illustrates the reallocation of liquidity required to attain equilibrium. Liquidity
that is not allocated to any pool is directed towards staking.

Empirical Calibration. To model the relationship between trading volume and
TVL in liquidity pools, we use the function defined in Equation (6). To estimate
the parameters k and ϵv, we apply a logarithmic transformation to linearize the
equation:

log(Vol) = log(k) + ϵv log(TVL), (11)

which can be expressed as a linear regression model y = a + bx where y =
log(Vol), x = log(TVL), a = log(k), and b = ϵv.

4.1 Interpretation of Elasticity and Scaling Constant Results

Table 1 presents the estimated elasticity of volume with respect to virtual TVL
and the scaling constant for six different chains. These metrics are derived from a
log-log regression model that captures the relationship between TVL and trading
volume. The key insights from the results are discussed below.

The elasticity of volume with respect to TVL for Ethereum is estimated
to be −0.12. This suggests that, contrary to expectations, an increase in TVL
on Ethereum is associated with a slight decrease in trading volume. However,
the scaling constant indicates a high baseline volume relative to TVL, suggest-
ing that Ethereum has a significant trading volume regardless of TVL changes.
Both Arbitrum and Arbitrum (e) pools exhibit negative elasticity values. These
results imply that an increase in TVL leads to a decrease in trading volume on
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Chain Elasticity (ϵv) Scaling constant (k) R2 SE(ϵv) SE(k)

Ethereum -0.121 3.05e+09 0.012 0.101 2.091
Arbitrum -0.177 3.95e+09 0.039 0.118 2.348
Arbitrum (e) -0.143 9.19e+08 0.010 0.128 2.488
Base 1.045 0.118 0.895 0.033 0.539
Optimism -0.178 2.37e+08 0.026 0.100 1.757
ZKsync 0.654 4.701 0.556 0.054 0.746

Table 1: Elasticity analysis across Ethereum and selected rollups. ϵv represents the
elasticity coefficient, k the scaling constant, R2 the goodness-of-fit, and SE denotes
standard errors for ϵv and k.

these chains. The scaling constants indicate that Arbitrum has a higher baseline
volume compared to Arbitrum (e). Optimism displays a negative elasticity, sim-
ilar to Arbitrum. The scaling constant for Optimism indicates a lower baseline
volume compared to Arbitrum and Ethereum. Yet, the R2 values are for these
chains remain low.

Base shows a positive elasticity value of 1.05, indicating that a 1% increase
in TVL is associated with a 1.05% increase in trading volume. The scaling con-
stant for Base is 0.12, which is significantly lower than other chains, suggesting
that Base has a lower baseline trading volume. ZKsync also exhibits a positive
elasticity value of 0.65, indicating that trading volume is positively correlated
with TVL on this chain. The scaling constant for zkSync is 4.70, suggesting a
relatively modest baseline volume compared to the other chains.

The elasticity results highlight the variability in the relationship between
TVL and trading volume across different chains. While Base and ZKsync —
new blockchains (launched in 2023) with new deployments of Uniswap (v3) show
positive elasticities, suggesting that TVL growth drives volume, Ethereum, Ar-
bitrum, and Optimism — well established and older chains - show negative
elasticities with low R2 values indicating that the relation between TVL and
Volume cannot be easily established. This can be attributed to differences in
user behavior, liquidity distribution, or (lack of) protocol incentives on these
chains. Arbitrum and Optimism were launched in 2021, and Ethereum in 2015.

4.2 Interpretation of Optimal Allocation Results

Table 2 presents the calculated results for the new LP willing to allocate $212k
liquidity among the pools on Ethereum and its L2s on 30th April 2024, assuming
3.47% staking rate of ETH. If the new LP would possess more liquidity, the
additional liquidity should be allocated to staking. If the LP would possess less
liquidity, it should be allocated to the pools with the highest rewards first. The
first observation is that the AMM pool on Ethereum is oversubscribed with a
return rate lower than the staking rate. Thus, the current LPs would yield higher
returns by reallocating their capital to L2s, or to staking. Second, the highest
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Chain TVL Daily Volume Return (%) Allocation LP Return (%)

Ethereum 219,361.63 344,883,212.09 3.03 - -
Arbitrum 87,534.74 145,128,466.78 13.43 84,699.60 6.62

Arbitrum(e) 38,322.85 58,601,891.49 12.33 33,913.61 6.36

Base 68,627.34 142,939,078.94 17.16 83,973.61 7.38

Optimism 6,147.50 16,156,525.13 22.12 9,372.02 8.24

ZKsync 103.96 26,430.69 16.72 124.26 7.30

Table 2: Calculations results for the new LP to the pools on Ethereum and its L2s
on 30th April 2024: TVL in the current tick after the last swap of the day, the daily
traded volume, and the annualized return of the pools. Further, the optimal
allocation for the new LP assuming the staking rate of ETH equal to 3.47%. The last
column presents the returns for the LP, based on the given allocations. There is no
allocation into the pool on Ethereum, as the return is below staking rate.

Fig. 5: The optimal redistribution of current liquidity among blockchains and with
the staking rate to attain equilibrium as of 30th April. The source liquidity is the
current tick within the Ethereum Uniswap (v3) WETH-USCD pool ($315k) and
corresponding target pools are: Ethereum ($102k), Base ($83.9k), Arbitrum ($84.7k),
Arbitrum(e) ($33.9k), Optimism, ($9.4k), and ZKsync ($0.8k).

return presents the pool on Optimism — 22.12%, however, given the trading
volume on Optimism, the highest capital allocation in optimal LP strategy is
achieved for the pools on Arbitrum and BASE, approx. 80k USD. The returns of
LP after allocating capital to the pools on L2s are presented in the last column
of Table 2 and ranges between 6 and 8.5%, significantly lower compared to the
current returns of 12 to 22%.

The optimal allocation formula can be is applied to identify the optimal
allocation of current liquidity that is deployed to Uniswap (v3) pools across
Ethereum and rollups. This is achieved by allowing the negative allocations
and assuming a initial LP wealth of 0. Figure 4a illustrates the re-allocation
of liquidity among pools to attain equilibrium. The results indicate that the
present allocation of liquidity to Ethereum is excessively high and should be
redistributed to pools on alternative chains and towards staking.

More detailed analysis is depicted in Figure 5 for 30th April 2024,. It presents
that over 2/3 of current capital allocated to the current tick of the pool at
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Ethereum should be reallocated, mostly to pools on Arbitrum and Base. This
corresponds to Figure 4a depicting trading volumes, which are only 2-3 times
higher at Ethereum than Arbitrum and Base, very low current LP returns for
liquidity provision at Ethereum (below staking rated) as depicted in Figure 4a.

5 Discussion

A key question arising from our analysis is why LPs do not reallocate their
capital to AMMs on L2s or to staking. Since our methodology ensures that all
selected pools share the same market risk exposure, LPs’ reluctance toward L2s
likely stems from security concerns, inertia, or a preference for Ethereum’s in-
frastructure. Potential security concerns include risks associated with centralized
sequencers, the upgradeability of L2 protocols, and bridging vulnerabilities. Sim-
ilar risk-related preferences have been observed among AMM traders on L2s [7].

Cost of Bridging. The cost of transferring tokens between Ethereum and L2s is
minimal—less than 1 basis point (0.01%) of the trade volume when intent-based
interoperability protocols [8], such as Across Protocol [1], are used. For instance,
in the case of a $100k transfer (as illustrated in Figure 5), the cost would not
exceed $5 per rollup, with transaction times ranging from just a few seconds to a
maximum of 15 minutes [1]. Furthermore, gas fees on Ethereum and L2s do not
pose a significant barrier to token transfers, as these costs remain low—below
$2 on Ethereum and approximately $0.10 on L2s [9].

Time of Bridging. The time of transfer during which the tokens cannot earn LP
fees lasts only seconds (up to 15 minutes), as bridges and intent-based interop-
erability protocols absorb the risk of L2 transaction not reaching the full finality
on Ethereum (hard finality), but assume trust in the centralized sequencers and
execute the transfers once the transaction in included L2 block by the sequencer
(soft finality) [38]. Especially for optimistic rollups this approach reduces the
finality time from 7 days of hard finality to 0.2-2.0s of soft finality.

Future Research. LP rewards should not only compensate for impermanent
loss and the opportunity cost of not staking capital (loss-versus-staking) [13]
but should also reflect the volatility of the traded assets. AMM pools with more
volatile tokens should yield higher returns relative to staking than pools with
less volatile pairs. This study focuses on the highly liquid WETH-USDC pool on
Uniswap v3. Future research could expand the analysis to other pools, particu-
larly those with lower liquidity or higher volatility (e.g., memecoin pools), where
loss-versus-rebalancing (LVR) [25] and impermanent loss may significantly influ-
ence LP allocation decisions. A sensitivity analysis that incorporates variations
in key parameters, such as TVL, trading volume, and stake rates, or an analysis
of other relationships between TVL and trading volume, could provide further
insight into the behavior of LP.
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6 Conclusions

The question of whether L2 blockchains cause the liquidity fragmentation of
Ethereum has been the subject of extensive debate. Our research indicates that
such fragmentation is currently not occurring, but, it could develop in the fu-
ture—particularly if LPs become aware of potentially higher returns available
on L2s. Using Lagrangian optimization, we developed a model for the optimal
liquidity provisions across AMMs on Ethereum and its L2s with staking as a ref-
erence rate. We showed that the returns of the AMM liquidity provision converge
to the staking rate.

In addition, we modeled and measured the elasticity of trading volume with
respect to TVL at the WETH-ETH pools at Uniswap (v3) across Ethereum and
rollups. Our finding indicate that at the well established blockchains - Ethereum,
Arbitrum and Optimism, an increase in TVL is not associated with an increase
in trading volume. In contrast, emerging blockchains, Base and ZKsync, exhibit
a positive elasticity value, indicating that the volume of trade is positively cor-
related with TVL on these chains.

Finally, we empirically compared profitability of liquidity provisions to
WETH-USDC pools, and observed that the Ethereum pool, compared to cor-
responding pools on L2s, is oversubscribed and often yields lower returns than
staking Ether. Using historical trading volumes and TVLs, we calculated the
optimal liquidity allocation for the new LP as well as the optimal capital reallo-
cation across Ethereum and L2s. Specifically, we found that more than 66% of
the Ethereum liquidity could be reallocated to rollups to maximize LP returns
and to achieve equilibrium with staking rates.
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A Proof of Proposition 3

The Lagrangian function is given by:

L(w, λ) = rsw0 +

n∑
i=1

fki(TVLi + wi)
ϵv−1wi + λ

(
W −

n∑
i=0

wi

)
.

Derivative w.r.t w0:
∂L
∂w0

= rs − λ = 0.

Solving for λ:

λ = rs.

For i = 1, . . . , n:

∂L
∂wi

= fki
[
(TVLi + wi)

ϵv−1 + (ϵv − 1)(TVLi + wi)
ϵv−2wi

]
− λ = 0.
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Substituting λ = rs:

fki
[
(TVLi + wi)

ϵv−1 + (ϵv − 1)(TVLi + wi)
ϵv−2wi

]
= rs.

Factor out (TVLi + wi)
ϵv−2:

fki(TVLi + wi)
ϵv−2 [(TVLi + wi) + (ϵv − 1)wi] = rs.

Since

(TVLi + wi) + (ϵv − 1)wi = TVLi + ϵvwi,

we rewrite the equation as:

fki(TVLi + wi)
ϵv−2(TVLi + ϵvwi) = rs.

Dividing both sides by fki(TVLi + ϵvwi), we get:

(TVLi + wi)
ϵv−2 =

rs
fki(TVLi + ϵvwi)

.

Taking the power 1
ϵv−2 on both sides:

TVLi + wi =

(
rs

fki(TVLi + ϵvwi)

) 1
ϵv−2

.

Solving for wi:

wi =

(
rs

fki(TVLi + ϵvwi)

) 1
ϵv−2

− TVLi.

Finally, the budget constraint must hold:

W = w0 +

n∑
i=1

wi.⊓⊔
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