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Abstract. We introduce a methodology for empirically evaluating the
outcomes of on-chain order flow auctions (OFAs), using price improve-
ment as the key metric and attributing it to factors such as routing
efficiency, gas optimization, and priority fee settings. The framework is
agnostic to the underlying OFA mechanisms and applies to a broad range
of tokens, including those not frequently traded or listed on centralized
exchanges (CEXes), enabling comprehensive comparisons of OFA per-
formance. This approach allows for real-world, on-chain evaluations of
auction outcomes, providing users with insights into which OFAs per-
form best and how these improvements are achieved. As an example,
we show how the methodology can be applied to 1Inch and Uniswap,
demonstrating significant price improvements of 4-5 basis points above
the Uniswap router, attributed to added liquidity in large swaps.

1 Introduction

Blockchain-based Automated Market Makers (AMMs) have achieved significant
success, with Uniswap surpassing 2 trillion USD in transactions [13]. However,
AMMs face challenges including fragmented liquidity and inefficiencies resulting
in losses exceeding 540 million USD [17].

Order Flow Auctions (OFAs), such as 1inch Fusion [15], UniswapX [2], CowSwap
[16], and MEV-Share [14] address these issues through batching, auctioning,
matching orders and rebates. The general idea among all OFAs is that the profit
from aforementioned inefficiencies (sometimes referred to as MEV) can be redis-
tributed to the user by auctioning of the right to execute the order or transaction.
However, empirical validation of their benefits remains challenging. Comparing
prices to centralized exchanges (CEXes) is insufficient as many tokens trade only
on DEXes. Cross-platform comparisons by block face selection bias—our dataset
shows only 85 overlapping blocks between UniswapX and 1Inch Fusion out of
12,199 total blocks (Table 1). To enable meaningful comparisons, we propose
viewing ‘price improvement’ relative to a consistent baseline. Our methodol-
ogy decomposes price improvement into routing efficiency, gas optimization, and
priority fee settings.
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We demonstrate the use of the methodology on 1Inch and Uniswap on Ethereum
mainnet [11] for WETH<>USDC over two months in 2023. [11]3. We select
these two as a starting point, primarily due to the similarity in OFA mecha-
nism (Dutch auctions). In this scenario, we find that 1Inch and Uniswap provide
similar improvements in trading experience.

Summary of our contributions. In this paper, we make four main contributions:

– Framework for Price Improvement. We introduce a systematic approach to
evaluate OFA performance through price improvement metrics, enabling con-
sistent comparisons across different interfaces.

– Methodology for Gas Cost Internalization. Gas costs can account for over
90% of effective spread in small AMM trades [1]. Our framework internal-
izes these costs into trade prices, capturing greater variability than median
benchmarks and correcting statistical bias in simulated transactions.

– Price Improvement Attribution Model. We attribute price improvements to
controllable factors, providing actionable insights for OFA optimization.

– Empirical Application. Applied to Uniswap and 1Inch on Ethereum, we find
that 4-5 basis points (bps) of improvements above the Uniswap router can
be achieved, driven by liquidity and routing optimization.

To our knowledge, this is the first formal definition and framework for assess-
ing price improvements in on-chain OFAs, providing granular insights into their
effectiveness. Preliminary findings suggest that OFAs may outperform interfaces
that rely solely on onchain data and liquidity sources.

Uniswap Classic Uniswap X 1Inch Aggregator 1Inch Fusion
Uniswap Classic 1800 38 9 16

Uniswap X 38 9498 43 85
1Inch Aggregator 9 43 1677 17

1Inch Fusion 16 85 17 2701
Table 1: Overlap of blocks with transactions between WETH<>USDC during
November and December of 2023.

2 Literature Review

Execution quality in financial markets has been widely studied, with early work
focusing on traditional equity markets. [6] reviews methods for measuring execu-
tion cost, including quoted, effective, and realized spreads, while [4] shows that
these costs can vary based on the measurement methodology. Similarly, [5] and
3 While our framework handles batch auctions and rebate mechanisms, their empirical

analysis is left for future work.
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[19] assess execution quality and costs across different US exchanges, highlighting
the impact of market structure and policy changes on execution outcomes.

Additional studies have shown that execution quality is multi-dimensional. [7]
emphasizes the importance of both cost and speed, while [9] explores the trade-
off between these two factors. Intraday patterns further complicate execution
quality, as [12] finds compensatory patterns between cost and speed in Nasdaq
trades.

Price improvement, a key aspect of execution quality, is also shaped by factors
such as payment for order flow and broker competition. [3] explores instances
where orders are executed at prices better than quoted, while [18] introduces
a theory in which price improvements vary with customer market power. [10]
documents differences in price improvement across asset classes, particularly in
markets where payment for order flow plays a role.

In the context of decentralized finance, [1] reports that effective spreads on
Uniswap are comparable to those in traditional asset classes. However, this study
does not account for cross-platform comparisons or the specific impact of gas
costs. [20] and [8] further investigate liquidity strategies and execution costs in
decentralized markets, but these studies stop short of offering a comprehensive
comparison of OFA systems.

To our knowledge, no existing framework systematically compares execution
quality across decentralized platforms, particularly when factoring in gas costs
and price improvement. This paper bridges this gap by introducing a formal
methodology to evaluate OFA performance across platforms and analyze execu-
tion quality, taking into account the unique mechanics of decentralized trading

3 Theoretical Framework

We aim to define ‘price’ and ‘price improvement’ consistently across OFA sys-
tems, where transaction costs (gas fees) are the primary differentiator. While
some OFAs internalize gas fees, others require upfront user payment. Direct
comparisons are complicated because gas fees may be denominated differently
than input tokens, with unclear exchange rates for conversion. Ignoring gas fees
leads to inaccurate price comparisons, as they can determine OFA performance
differences.

We aim to define ‘price’ and ‘price improvement’ consistently across OFA
systems, where transaction costs (gas fees) are the primary differentiator. While
some OFAs internalize gas fees, others require upfront user payment. Direct
comparisons are complicated because gas fees may be denominated differently
than input tokens, with unclear exchange rates for conversion. Ignoring gas fees
leads to inaccurate price comparisons, as they can determine OFA performance
differences.

Our methodology applies to transactions where either input or output token
is the gas token (ETH) or its wrapped version (WETH), covering approximately
90% of Ethereum DEX trades4. This standardization allows uniform price def-
4 https://dune.com/queries/3675220
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initions across all OFAs, regardless of their gas fee handling. In section 4, we
demonstrate how to apply the formalism to Dutch auction based OFAs, and
leave additional emperical studies for future work.

3.1 Price

Consider a user with pre-trade balance (a, b) and post-trade balance (a′, b′) of
tokens A and B. We define the price p as

p =
b′ − b

a− a′
, (1)

where the signs reflect the increase in Token B and decrease in Token A. When a
user initiates a trade with fixed input i, the price depends on three controllable
variables: output amount o (optimized via routing), gas usage g (varies with
transaction complexity), and priority fee f (affects transaction ordering). We
express these as vector x = (o, g, f), defining price as p(x). For example, trading
ETH for USDC with gas cost g(b+ f) (where b is the base fee) gives:

p =
o

i+ g(b+ f)
. (2)

The price calculation varies by OFA type:

– Traditional: Gas costs directly affect price through ETH balance changes
– Gas-free: Price reflects only token exchange ratios (via Permit2)
– MEV-aware: Price includes potential rebates.

See Appendix A for detailed examples of each case.

3.2 Price Improvement

We define price improvement (π) as the relative difference between the realized
price p and a baseline counterfactual price p′, where p′ represents the price
that would have been achieved under normal conditions without an Order Flow
Auction (OFA). Formally:

π(p, p′) =
p− p′

p′
. (3)

The counterfactual baseline p′ serves as a neutral reference point, enabling us to
evaluate execution quality across systems by comparing realized outcomes with
the baseline.

3.3 Flexibility in Generating Counterfactual Prices

The baseline serves as a reference point, much like measuring altitude relative to
sea level, ground level, or another benchmark: while the chosen reference point
affects absolute measurements, it does not impede the ability to make meaningful
relative comparisons across different systems (if chosen correctly).
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Since price p is a function of output tokens o, gas fees g, and priority
fees f , a counterfactual price p′ can also be generated by counterfactual val-
ues o′, g′, and f ′. Therefore, the counterfactual price p′ can be expressed as
p′ = p(o′, g′, f ′) = p(x′), where x′ = (o′, g′, f ′) represents the primed (coun-
terfactual) values for these variables. For more detailed information on how we
generate the counterfactual variables x′, refer to Section 4.

While alternative baselines, such as CEX prices, could be considered, they
would restrict the analysis by limiting available tokens and reducing attribution
to factors like gas costs or liquidity routing (see Section 3.5), as they do not
provide x′ = (o′, g′, f ′).

3.4 Price Improvements Across Time

Our primary definition of price improvement π compares realized prices against
counterfactual prices at the settlement time t0. However, it is also useful to eval-
uate price improvement across various time offsets ∆t from t0, allowing us to ac-
count for execution speed and timing differences among OFAs. This approach is
conceptually similar to markout in traditional finance, where the performance of
a trade is measured relative to its price at different time intervals post-execution.

Implicit in the realized price p is the settlement time t0, p = p(t0), but a
counterfactual price p′ = p′(t) can be generated at any time. Thus, we extend
our definition of price improvement by including the time dimension as follows
π(p, t0; p

′, t) = p(t0)−p′(t)
p′(t) .

Since t0 is fixed historically, the only key differences arise from offsets ∆t =
t− t0. To explore this, we shift the definition by −t0, treating all times relative
to the settlement time. This leads to the more practical definition: ρ(p; p′, ∆t) =
p−p′(∆t)
p′(∆t) , where we have dropped t0 for simplicity. When ∆t = 0, we recover our

original defition of price improvement ρ(p; p′, 0) = π(p, t0; p
′, t0). This process is

depected in Figure 1.
Evaluating price improvement across different time offsets ∆t provides several

benefits:

1. Transaction Speed: It helps account for potential differences in transaction
inclusion speed between the actual interface and the counterfactual interface,
highlighting robustness issues related to execution speed.

2. Order Filling Mechanisms: Different trading interfaces have mechanisms that
affect whether or how orders are filled. By analyzing multiple offsets, we can
identify and adjust for any selection biases these mechanisms may introduce.

3. Blockchain Conditions: The blockchain environment can be unpredictable,
with gas spikes or storage issues affecting outcomes. Evaluating a range of
time offsets mitigates the impact of transient conditions, ensuring more ac-
curate results.

4. Transaction Ordering: On platforms like Ethereum, transaction ordering can
be adversarial. Comparing against multiple counterfactual orderings reveals
sensitivity to transaction ordering strategies.
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5. Interpretation Flexibility: Depending on the context, we can compare coun-
terfactual prices at different points in time, such as at arrival or execution,
allowing for flexible interpretations of price improvement.

time

Price

t-4 t-3 t-2 t-1 t0 t1 t2 t3

p′

p

∆t

ρ ∗ p′

-4 -3 -2 -1 0 1 2 3

Fig. 1: On the left, we show the real transaction that occurred in the 0th block
with price p, and the counterfactual transactions generated at the end of the
given blocks with prices p′(t). The arrows represent the differences between p and
p′ at different times, or the un-normalized price improvement: π(p, t0; p′, t)∗p′(t).
On the right, we show the same un-normalized price improvements, however,
with the x-axis now changed to relative time: ρ(p; p′, ∆t) ∗ p′(t).

3.5 PI Attribution

In our framework, price improvement π is conceptualized as an aggregated result
of various controllable decisions, such as routing, gas usage, priority fee settings.
To provide a more granular insight into how PI was achieved empirically, we de-
compose π into three economically significant components: routing optimization
πrouting, gas optimization πgas , and priority fee optimization πfee

π = πrouting + πgas + πfee , (4)

where πrouting captures the π through optimizing liquidity access, πgas captures
the π from reduced gas costs, and πfee captures the π from lower priority fees.

Interface decision making impacts these PI components through several mech-
anisms:

1. Route Optimization: Interfaces optimize routing by selecting liquidity
sources, which may include on-chain pools or off-chain sources. While more
liquidity is generally better, it comes at the cost of additional gas usage.
πrouting measures the PI achieved through including more liquidity in the
route than the baseline.

2. Gas Efficiency: An optimal routing decision minimizes gas usage while
maximizing liquidity access. πgas quantifies the PI achieved through using
less gas compared to the baseline.

3. Priority Fee Setting: Under EIP-1559, any positive priority fee is usually
sufficient for inclusion, but some interfaces recommend higher priority fees
for faster execution. πfee measures the PI gained by minimizing the priority
fee.
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To attribute π, we Taylor expand the price function p(x) about the baseline
variables x′,

p(x) = p(x′)

+
∂p

∂o

∣∣∣∣
x′

(o− o′) +
∂p

∂g

∣∣∣∣
x′

(g − g′) +
∂p

∂f

∣∣∣∣
x′

(f − f ′)

+R(x,x′) , (5)

where R(x,x′) represents the remainder term. Note that, in all the cases we
consider, p(x) is differentiable in the domain of interest. For example, considering
the WETH/ETH out in eq. 8, we have ∂p

∂o = 1
i ,

∂p
∂g = −(b+f)

i and ∂p
∂f = −g

i .
Rearranging eq. (5) gives us:

π =
∂p

∂o

∣∣∣∣
x′

(o− o′)

p′
+

∂p

∂g

∣∣∣∣
x′

(g − g′)

p′
+

∂p

∂f

∣∣∣∣
x′

(f − f ′)

p′
+

R(x,x′)

p′

= πrouting
0 + πgas

0 + πfee
0 + πrem., (6)

where the 0 subscript indicates leading order contributions. Note that every term
here is a function of on-chain values x = (o, g, f) and simulated values x′ =
(o′, g′, f ′), and so is calculable. Of course, it is not guaranteed that remainder
term πrem. is small, but we will find that for some cases, it is.

For OFAs where gas is internalized, the amount output token o that the user
receives is post-fee. By using onchain data for g, b and f , we can calculate what
the pre-fee output would have been, allowing us to attribute π in these cases.

4 Methodology

While our primary contribution is a theoretical framework for evaluating any
OFA’s price improvements, this section demonstrates its practical application
to market leaders that utilize Dutch auctions, Uniswap and 1Inch, highlighting
both implementation challenges and potential at scale.

4.1 Sample Interfaces

Uniswap and 1Inch interfaces each offer two execution paths. One provides tra-
ditional transactions, which are predetermined routes through public on-chain
sources (Uniswap Classic and 1Inch Aggregator), whereas the other (UniswapX
and 1Inch Fusion) provides intents and Dutch auction based settlement, where
the liquidity can be derived from both private and public on-chain sources. The
interfaces dynamically route orders to the path offering better execution. This
introduces selection bias: UniswapX and Fusion trades appear to outperform
because they are only chosen when advantageous. A comprehensive evaluation
must therefore consider both execution paths together to understand true OFA
performance in the context of overall routing decisions. These interfaces pro-
vide an ideal comparison because they share similar characteristics: Classic and
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Aggregator require direct gas payment in ETH, while UniswapX and Fusion in-
ternalize gas costs through specialized participants called solvers ot fillers. This
parallel structure enables consistent application of our methodology while high-
lighting key differences in execution approaches.

4.2 Selection of Baseline

Our theory permits any baseline that can generate counterfactual values of out-
put token, gas and priority fees. To illustrate the application of our framework,
we select our baseline as a counterfactual simulated swap using the Uniswap
Classic routing API at the end of the block in which the actual trade occurred,
executed through three steps:

1. Route Calculation: Submit identical token pair and amount to the routing
API, which finds optimal routes using blockchain state from surrounding
blocks (n blocks before/after) for robustness

2. Route Formation: API assesses end-block state and pool liquidity (from
The Graph), determines optimal route, and formats into calldata with gas
estimates

3. Simulation: Execute calldata through Tenderly simulator with consistent
priority fee (0.1 Gwei), obtaining gas consumption and output details

This choice is beneficial for several reasons:

1. Assumption Test: The price improvement (PI) of Uniswap Classic com-
pared to itself should be zero, providing a crucial accuracy check of the
baseline simulation at the end of the block.

2. User Experience: Provides realistic approximation of typical trading con-
ditions, enabling meaningful comparisons between different OFAs.

3. Token Coverage: Uniswap’s extensive pool coverage enables comprehensive
analysis that can capture long-tail tokens and on-chain dynamics.

4. Public Access: Open API enables reproducible analysis by any third party.

The API accesses historical blockchain states, enabling simulations at different
block times Section 3.4.

4.3 Data Collection

In this section, we describe the process of collecting the data necessary for our
analysis. We focus on historical values for input amounts i, base fees per gas b,
output amounts, gas used, and priority fees per gas, represented as x = (o, g, f).
Counterfactual baseline values x′ = (o′, g′, f ′) are generated via the Uniswap
Classic routing API.

Our dataset includes all WETH-USDC trades from November and December
2023, which are sourced from Dune Analytics, and validated for Uniswap Labs
from provided internal datasets. We collect transactions from Uniswap Classic
and UniswapX by filtering interactions via the Uniswap Interface, and for 1Inch
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Interface Path Size % Parent Volume ($) % Vol

1Inch Aggregator 1687 36% 37,891,096 22%
Fusion 2941 64% 134,221,271 78%

Uniswap Classic 1809 16% 28,573,360 13%
X 9607 84% 185,599,214 87%

Table 2: Distribution of swaps and volumes across different settlement paths for
1Inch and Uniswap interfaces.

trades, we extract data using the oneinch table in Dune Analytics. To focus
purely on execution quality, all interface fees are ignored.

To generate a baseline price p′, we rely on API calls for historical transactions.
For each block time t and input amount i, the API provides counterfactual
estimates of the output token o′ and gas used g′. We define a baseline function
to generate counterfactual prices as B as B : (i, t) → (o′, g′), with a consistent
baseline priority fee per gas f ′ of 0.1 Gwei. For more details on counterfactual
generation see Appendix A.

4.4 Baseline Gas Corrections

One key challenge in generating accurate counterfactual baselines is estimating
gas usage g′. The gas estimated by simulations may not always match the actual
gas used g in historical transactions. Figure 2 illustrates the difference between
the simulated gas g′ and the actual gas g for Uniswap Classic trades. Ideally, g′
should closely match g.

Discrepancies arise due to factors like Just-In-Time (JIT) liquidity provision
[20], where the actual gas used may be lower than estimated. Additionally, sim-
ulations are performed at the end of a block, while trades occur at various times
within the block, leading to potential differences.

To correct for this (i.e., to address the systematic error), we apply a correction
factor. By comparing g′ to the actual gas g, we fit the adjustment factor (β1) via
regression: g′ ≈ β1g. We then adjust the estimate: g′ ← g′/β1. This adjustment
(or calibration) reduces the gap between the simulated and actual gas usage,
improving the reliability of the price improvement measurement by ensuring our
estimates better reflect actual outcomes.

4.5 Uncertainty Analysis

In our analysis of price improvement π and its components πattribute
0 , we cal-

culate an average value π̄ weighted by the trade’s USD value. This average is
influenced by two sources of uncertainty: statistical uncertainty (which arises
from variations in individual trades) and systematic uncertainty (which arises
from potential biases in our gas estimates).
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Fig. 2: Comparison between actual gas used g and estimated gas g′ for Uniswap
Classic transactions. The red line represents perfect gas estimation, and the
green dashed line shows the corrected estimate with confidence bounds.

Statistical uncertainty (σstat) is computed using the weighted standard
error. For a trade i with price improvement zi ∈ {π, πattribute

0 } and weight wi,
we calculate:

σ2
stat =

∑
i wi(z̄ − zi)

2

n
∑

j wj
.

This gives us the uncertainty due to variability in the sample data.
Systematic uncertainty (σsys) of the gas estimation is computed by vary-

ing β1 and calculating the bounds: σupper
sys = z̄(β1 + δβ1) − z̄(β1) and σlower

sys =
z̄(β1) − z̄(β1 − δβ1). Note that this is an asymmetric uncertainty. Finally, we
combine both sources of uncertainty into the total uncertainty for z̄, given by
z̄ ±

√
σ2

stat + σ2
sys.

4.6 Discussion and Additional Limitations

Although various factors introduce uncertainty, we find their impact to be mini-
mal since, on average, since the price improvement of Uniswap Classic compared
to itself is zero in Figure 3. This validation suggests that while these factors
exist, they do not significantly affect the average value. Several factors introduce
uncertainty in both gas usage estimates g′ and output token estimates o′:

1. Simulation changes: Updates to the simulation algorithm may cause dis-
crepancies in gas and output estimates.

2. Intra-block effects: Simulating at the end of the block overlooks intra-block
dynamics, such as liquidity shifts and ticks crossed, which can influence gas
usage and output accuracy.

3. Self-impact: Transactions interacting with the same liquidity pool may
degrade counterfactual results due to self-induced effects, similar to front-
running, impacting output token amounts.

4. Data-integrity: Un-validated data for 1Inch may introduce biases from
indexing delays or missing transactions.
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5 Results

Our analysis reveals that auction-based platforms like UniswapX and 1Inch Fu-
sion can achieve substantial price improvements, in this case, primarily through
enhanced liquidity access. Uniswap Classic shows no price improvement relative
to itself, confirming the accuracy of our framework, while small correction terms
validate the use of first-order approximations for most systems. Larger correc-
tion terms for auction-enhanced platforms like UniswapX suggest the need to
account for higher-order effects.
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Fig. 3: USD-weighted price improvement trajectory ρ comparing Uniswap Clas-
sic, Uniswap X, 1Inch Ag- gregator, and 1Inch Fusion across time (in units of
blocks) relative to settlement. The left panel shows settlement-path level decom-
position, validating our methodology through Uniswap Classic’s zero improve-
ment at settlement, while the rightpanel presents interface-level aggregation re-
vealing systematic differences in execution quality. Shaded areas indicate ±1σ
intervals, accounting for both statistical and systematic uncertainties

Figure 3 shows the USD-weighted price improvements across platforms at
different time offsets from the settlement block. As expected, Uniswap Classic
exhibits zero price improvement at settlement, confirming our methodology’s
accuracy in capturing where improvements exist. Both Uniswap-X and 1Inch
Fusion, the Dutch auction components, show equivalent price improvements av-
eraging 5-6 basis points. On the right, the combined result for all interface trades
(which accounts for the selection bias), shows that the difference in overall per-
formance is a result of the interfaces’ traditional routing execution.

Price improvement is further analyzed by trade size in Figure 4. While smaller
trades exhibit more volatility, larger trades stabilize with consistent positive price
improvement. UniswapX reaches nearly 4 basis points for trades around $200k,
outperforming 1Inch Fusion as trade size increases.

To investigate the differences, Figure 5 and Figure 6 provide a breakdown
of price improvement into key attributes: routing efficiency, gas optimization,
and priority fee settings. Routing efficiency is the dominant factor, with smaller
contributions from gas and priority fees. Gas overheads (0.5-1 basis points) are
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Fig. 4: Price Improvement (PI) analysis across trade sizes for Uniswap and 1Inch
interfaces. The rolling USD-weighted PI demonstrates how execution quality
varies with trade size, revealing distinct patterns for each interface. Larger trades
show more consistent improvements, while smaller trades exhibit higher variabil-
ity. Shaded areas indicate ±1σ intervals, combining statistical and systematic
uncertainties.

observed in both UniswapX and 1Inch Fusion, though they do not outweigh the
routing benefits.

Route Gas Fee Corrections Total PI
Attribution Categories

1

0

1

2

3

4

5

6

US
D 

W
ei

gh
te

d 
PI

 (b
ps

)

UniswapClassic
UniswapX
1InchAggregator
1InchFusion

Fig. 5: Decomposition of USD-weighted price improvements across settlement
paths, showing relative contributions from routing efficiency, gas optimization,
and priority fee settings. The breakdown reveals that routing efficiency domi-
nates price improvements, particularly in auction-based systems (UniswapX and
1Inch Fusion), while gas optimization plays a secondary but significant role.

To validate the approximation, we examine correction terms. For Uniswap
Classic and 1Inch Aggregator, these corrections are negligible, confirming the ac-
curacy of the first-order approximation. For UniswapX and 1Inch Fusion, larger
correction terms indicate non-linear effects, particularly from gas optimization
and priority fees, which can be understood by explicitly extending eq. (6). While
first-order terms capture much of the system’s behavior, these corrections high-
light the complexity of auction-based platforms. Note that, the differences be-
tween Uniswap Classic and 1Inch Aggreagator arise primairly from the routes,
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sizes for all settlement paths (Uniswap Classic, 1Inch Aggregator, Uniswap-X,
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inate at different trade sizes, with routing efficiency becoming increasingly impor-
tant for larger trades while gas optimization effects remain relatively constant.
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whereas the differnces between Uniswap-X and 1Inch Fusion arise primairly due
to the filler networks.

6 Outlook

This work provides a framework for analyzing price improvement in OFAs, with
extensions to better understand transaction costs. The applications of this ex-
act methodology to batched auctions (COW Swap), and rebate systems (MEV
Share, MEV Blocker) is left for future work. Extensions can also include com-
parisons between fillers that use private and public on-chain liquidity sources,
the impact of different benchmarks to validate ordering assumptions, as well
as investigating why one OFA type might out perform another in different at-
tributes. Lastly, this works establishes a foundation for comprehensive analysis
of on-chain trading, as it can scale to all tokens and answer on-chain specific
questions.
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A Price Details

Realized and counterfactual prices depend on if gas is/not internalized and if
the input token is/not WETH. Realized prices: For traditional transactions
where gas is not internalized, we have two cases,

p =

{
o−g(b+f)

i , when token out address = WETH/ETH
o

i+g(b+f) , when token in address = WETH/ETH
. (7)

For modern OFAs using Permit2 signatures5 enable gas-free user experiences,
p = o

i . For systems involving MEV rebates, the price is similar to traditional
transactions but adjusted for the rebate. Counterfactual prices: As mentioned
before, the baseline function generates quotes B(i) → (o′, g′). When the API is
given an input i, it can generate a token out amount estimate o′, and gas use
estimate g′. When the gas is not internalized , we compute p′ as

p′ =

{
o′−g′(b+f ′)

i , when token out address = WETH/ETH
o′

i+g′(b+f ′) , when token in address = WETH/ETH
. (8)

When gas is internalized, we compute a token in amount gas adjusted i′ =
i− g′(b+ f ′), we define the following B(i′) = (o′′, g′′), and

p′ =

{
o′−g′(b+f ′)

i , when token out address = WETH/ETH
o′′

i′+g′(b+f ′) , when token in address = WETH/ETH
. (9)

Note that the denominator is just i, but we have written it in a way that allows
us to estimate the amount of input token that you have available to route i′, and
the amount that you must pay in gas g′(b+ f ′). The amount of token that you
have available to route is then used to generate the token out amount estimate
o′′.
5 https://blog.uniswap.org/permit2-and-universal-router


