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Abstract. We study liquidity on decentralized exchanges (DEXs), iden-
tifying factors at the platform, blockchain, token pair, and liquidity pool
levels with predictive power for market depth metrics. Using the counter-
factual v2 spread metric, we decompose the contribution of each factor
on market depth into two channels: total value locked (TVL) and concen-
tration. We further explore how external liquidity from competing DEXs
and private inventory on DEX aggregators influence market depth. We
find that (i) gas prices, token price returns, and the market share of trad-
ing volume affect liquidity through concentration, (ii) internalization of
order flow by private market makers affects TVL but not the overall
market depth, and (iii) token price volatility, fee revenue, and markout
affect liquidity through both channels.

1 Introduction

Liquidity plays a fundamental role in financial markets, serving as a critical de-
terminant of market efficiency and stability. This is particularly evident in tradi-
tional finance (TradFi), where liquidity impacts execution prices, price discovery,
and overall market robustness. Extensive research has explored how factors such
as asset volatility and investor behavior shape liquidity in TradFi. However, the
evolving nature of decentralized finance (DeFi) introduces dynamics for liquidity
provision that remain under-explored.

Decentralized exchanges (DEX) introduce novel paradigms for liquidity pro-
vision and trading, utilizing liquidity pools and pricing functions as opposed to
limit order books. Understanding the dynamics of liquidity in DEXs under this
new paradigm is not only important for traders and investors, but also for the
design and development of DEXs. While a substantial body of literature exists
in TradFi regarding liquidity, there is a pressing need for more research on the
idiosyncratic elements of liquidity provision in DEXs. This paper addresses this
gap by investigating the forces that drive liquidity and market depth in DEXs,
contributing to both academic discourse and practical applications in DeFi.
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One recent development in DeFi has been the rise of liquidity aggregators,
which combine liquidity from on- and off-chain sources to deliver better execution
prices for trades. While research has shown that these services improve prices for
traders, their impact on liquidity provision in AMMs is less studied. We answer
this question by analyzing if and how these services affect on-chain liquidity.

We focus on liquidity dynamics within the Ethereum ecosystem, examining
pools on the Uniswap v3 protocol deployed on the Ethereum Mainnet (L1) and
Layer 2 (L2) networks. As the primary blockchain for decentralized applications,
Ethereum is host to a variety of DEXs, with Uniswap standing out as the leading
platform in trading volume, total value locked (TVL), and user adoption. While
our analysis focuses on Uniswap v3, we show that our framework is applicable
to a broader class of AMMs, including those used on Uniswap v2 and v4.

Our Contributions. The results of our analysis offer valuable insights into the
determinants of liquidity in AMMs. The key contributions of this paper are:

1. Identifying on-chain predictive factors for liquidity: We identify fac-
tors on period t that forecast various market depth metrics on period t+ 1.
We find that gas prices, token pair returns and volatilities, and in-pool fee
revenue and markout have significant explanatory power on future market
depth, consistent with prior theoretical results.

2. Decomposing the contribution of each factor on liquidity into two
channels: With the counterfactual v2 spread metric, we decompose effective
spreads into TVL and concentration components. This allows us to identify
the channel(s) in which changes to market depth occur, whether through the
deployment and/or concentration of liquidity.

3. Understanding impacts of external liquidity: We examine the impact
of liquidity sources outside Uniswap v3 pools, focusing on competing DEX
liquidity and off-chain liquidity used by aggregators. We find that a higher
competitor market share negatively impacts liquidity, while more internal-
ization by fillers has no significant impact on overall liquidity.

Related Literature. Our paper contributes to the literature on liquidity pro-
vision in DEXs. Some studies focus on incentives for/against liquidity providers
(LPs). Lehar and Parlour [15] as well as Capponi and Jia [5] study equilibrium
in liquidity pools, showing that volatility arbitrage risk causes LPs to exit pools.
Capponi, Jia, and Zhu [7] analyze the phenomenon of just-in-time liquidity [23],
showing that it may lead to shallower pools by taking fees away from and leav-
ing toxic order flow to passive LPs. An important factor behind these incentives
are the losses incurred by LPs. Two popular loss metrics are impermanent loss
[12,13,17,18] and loss-versus-rebalancing [20,21], which compare the profitability
of providing liquidity against holding and rebalancing, respectively.

Other studies focus on liquidity in AMMs that use concentrated liquidity, e.g.
Uniswap v3. Lehar, Parlour, and Zoican [16] find that large (small) LPs prefer
low-fee (high-fee) pools on Uniswap v3 and adjust their positions (in)frequently.
Lyandres and Zaidelson [19] examine capital allocation on Uniswap v3, finding
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that market efficiency causally impacts capital efficiency. Cartea et al. [8] and
Fan et al. [11] study strategies for liquidity provision on Uniswap v3.

We contribute to this literature by providing the first comprehensive empir-
ical analysis regarding determinants of liquidity and market depth on DEXs.
We consider the effects of multiple factors on liquidity simultaneously, with our
sample spanning three years and across multiple blockchains.

Closest to our counterfactual v2 spread (Cv2S) metric for liquidity concen-
tration is the capital allocation efficiency (CAE) metric of [19]. While CAE is
dependent on the trades that occurred in the pool during the calibration period,
Cv2S is a function of trade size and independent of other trades. Thus, two pools
with the same “liquidity landscape” can have different CAE values, but always
have the same Cv2S given trade size.

Our paper also contributes to the literature on informed trading taking place
in DEXs. Capponi, Jia, and Yu [6] show that trades with higher priority fees
contain more information and have a higher price impact. Klein et al. [14] ana-
lyze information contained in both trade and liquidity events on DEXs, finding
evidence of heterogeneity in price impact across several dimensions. We con-
tribute by showing that informed trading within a pool, proxied by markout,
has a negative effect on market depth.

Another contribution of our paper is to the literature on liquidity in off-chain
exchanges for cryptocurrencies, i.e. centralized exchanges (CEXs) and DEX ag-
gregators. Brauneis et al. [4] study liquidity on CEXs, finding that returns and
volume have predictive power on liquidity. Bachu, Wan, and Moallemi [3] pro-
vide empirical evidence of DEX aggregators improving prices for traders. Chitra
et al. [9] analyze a model with theoretical implications that internalization of or-
der flows by fillers negatively affects on-chain liquidity. We contribute by finding
that in practice, there is no evidence of such an effect, which speaks positively
to the coexistence of DEXs with order flow auction venues.4

2 Background

Automated Market Makers. AMMs use liquidity pools and algorithmic pric-
ing functions to facilitate the on-chain exchange of tokens. When LPs deposit
tokens into a pool, they receive pool tokens that indicate their stake of the pool
and determine the amount they withdraw. Traders typically have to pay a fee
proportional to the trade size; this fee is distributed pro-rata among LPs by their
stake and incentivizes them to stay in the pool.

Many AMMs are constant function market makers (CFMMs), which requires
post-trade pool reserves to be on the same level set of the pricing function as pre-
trade reserves. For example, in a pool with X tokens X and Y tokens Y, a trade
of ∆X tokens X for ∆Y tokens Y must satisfy the relation F (X+∆X , Y +∆Y ) =
F (X,Y ), where F : R2

+ → R is the pricing function. AMM protocols using this
design include Uniswap v2, Curve, and Balancer.

4 Our finding does not necessarily contradict those of [9], since their assumption that
filler inventory must be in-wallet does not always hold (cf. UniswapX, CoW Swap).
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The “concentrated liquidity” (CL) mechanism for AMMs [2], first pioneered
by Uniswap v3, allows LPs to choose the price range in which their liquidity is
active, with narrower ranges yielding higher “virtual” liquidity. This allows for
higher capital efficiency, but also introduces new complexities for LPs in terms
of managing risk and exposure, since out-of-range LP positions do not earn fees
and poorly concentrated pools may increase trading costs.

DEX Aggregators. The success of AMMs has lead to a proliferation in DEXs,
with there being over 100 DEXs at the time of writing. This growth has led
to the fragmentation of liquidity across multiple DEXs. In response, protocols
such as 1inch Fusion, CowSwap, and UniswapX have introduced new methods
to handle order flow, leveraging liquidity from various on-chain sources and off-
chain private market makers (PMMs), to optimize trading outcomes for users in
a fragmented ecosystem.

DEX aggregators process order flow from their interfaces and allow special-
ized users, including PMMs, to determine the ordering and/or routing of trades
to achieve better execution prices, most commonly implemented via order flow
auctions (OFAs). These OFAs can have varying formats: for example, CowSwap
uses batch auctions, whereas 1inch Fusion and UniswapX use Dutch auctions.

3 Data

We use publicly available Uniswap v3 data from May 5, 2021 to July 31, 2024.
The liquidity pools in our sample, shown in Table 1, are selected as follows:

– Obtain the top 4 blockchains by average trading volume through the sample
period. For each selected blockchain, obtain the top 100 pools by average
trading volume through the sample period.

– Select the pools corresponding to the token pair and fee tier combinations
appearing in all four top-100 lists.

Pair \ Network Ethereum Arbitrum (L2) Optimism (L2) Polygon (L2)

CRV–WETH 30 bps 30 bps 30 bps 30 bps

DAI–WETH 30 bps 30 bps 30 bps 30 bps

LDO–WETH 30 bps 30 bps 30 bps 30 bps

LINK–WETH 30 bps 30 bps 30 bps 30 bps

USDC–WETH 5, 30 bps 5, 30 bps 5, 30 bps 5, 30 bps

WBTC–WETH 5, 30 bps 5, 30 bps 5, 30 bps 5, 30 bps

WETH–USDT 5, 30 bps 5, 30 bps 5, 30 bps 5, 30 bps

Table 1: Liquidity Pools Included in Sample by Pair, Network, and Fee Tier.



What Drives Liquidity? 5

3.1 Liquidity Metrics

Effective Spread. We compute the effective spread, which we define as the
difference in quoted price between buying and selling a fixed amount of a given
token in a liquidity pool, minus transaction fees. By using quoted prices rather
than execution prices and subtracting out transaction fees, we ignore the impacts
of MEV- and fee-related slippage (see [1] for example), which isolates the effect
of liquidity on the trading costs. Effective spreads are a key measure of liquidity,
representing the difference between buying and selling an asset in a market, with
a smaller (larger) effective spread indicates a deeper (shallower) market.

We acquire quoted prices from Uniswap v3 quoter contracts.5 These contracts
have functions to obtain quotes for buying or selling a token at historical blocks,
allowing the user to specify blockchain, token pair, fee tier, and swap size. For a
given trade size of ∆ WETH, we compute the relative difference in quoted price
between buying and selling ∆ WETH minus twice the fee tier f . Using Uniswap
v3’s quoter contract, the ExactOutput function yields the ask price, denoted A,
and the ExactInput function yields the bid price, denoted B. For each day in
our sample period, we obtain quotes every six hours (for four samples per day),
and take the spread for the day as the average of these measurements.

Formally, the normalized effective spread (“v3 spread”), in basis points at-
tributed to market depth at day t on a given pool with fee tier f is

v3Spoolt = 104 ×

1

4

∑
i∈[4]

Apool
t,i −Bpool

t,i

1
2 (A

pool
t,i +Bpool

t,i )
− 2f


where i indexes the in-day samples. Since quoted prices contain fees, we subtract
2f from the average and multiply by 104 to obtain basis points. For our selected
pools, f is 0.0005 or 0.003, corresponding to 5 or 30 basis points, respectively.

Total Value Locked. Total value locked (TVL), the US dollar value of a pool’s
token reserves, is another important measure of liquidity in DEXs. In CFMMs,
the TVL is a perfect signal of market depth as execution prices are computed
directly based on the pool reserves. In AMMs using CL like Uniswap v3, however,
TVL is a noisier signal as market depth also depends on how those reserves
are concentrated around the pool’s current tick. Since fee revenue and risk are
shared pro-rata on the Uniswap protocol, TVL is also a benchmark that other
pool metrics can be normalized against.

We compute TVL by aggregating mint (deposit), burn (withdrawal), and
swap events on liquidity pools, keeping track of how token quantities in each
pool vary over time. At the end of each day t, we sum the number of each token
in a liquidity pool weighted by the end-of-day token price in USD to arrive at
the end-of-day TVL.

5 https://docs.uniswap.org/contracts/v3/reference/periphery/lens/Quoter

https://docs.uniswap.org/contracts/v3/reference/periphery/lens/Quoter
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Summary Statistics. The summary statistics of our liquidity metrics are dis-
played in Table 2. We highlight the differences between liquidity in pools on
L1 (Ethereum) and L2 networks. Effective spreads are lower, less dispersed, and
more right-skewed on L1 pools relative to L2 pools. TVL is higher, less dispersed,
and more left-skewed on L1 pools than L2 pools. Notably, both liquidity metrics
are relatively normally distributed for L2 pools in our sample. Relevant data
visualizations for these liquidity metrics are in the Online Appendix.

log v3S (L1) log TVL (L1) log v3S (L2s) log TVL (L2s)

N 11371 11371 27069 27069

Mean -0.6944 17.976 2.6869 13.7407

S.D. 2.1329 1.9306 2.3198 1.9985

Skew 1.7493 -1.5520 0.1135 -0.1417

25% -1.9277 17.5133 0.9339 12.3722

50% -1.2828 18.3872 2.5252 13.7500

75% -0.1236 19.5271 4.1776 15.2480

Table 2: Summary Statistics for Liquidity Metrics.

3.2 Independent Variables

The set of factors to regress our liquidity metrics is motivated by previous the-
oretical and empirical research on liquidity in DEXs, from which several factors
consistently appear: gas price at the blockchain level, price returns and volatility
at the token pair level, and adverse selection (informed trading) and fee revenue
(noise trading) at the pool level. These are summarized in Table 3, and generally
agree with each other on the direction effects of the variables on liquidity.

Variable Prediction/Finding (Setting)

gas price [16,18]: ↗ gas price =⇒ ↘ rebalancing frequency (v3)

returns [8]: returns have ambiguous effects on price ranges (v3)

volatility
[15]: ↗ volatility =⇒ ↘ pool size (v2)
[5,8]: ↗ volatility =⇒ wider ranges (v3)

fee revenue
[5,7,15]: ↗ fee revenue =⇒ ↗ pool size (v2)
[8]: ↗ fee revenue =⇒ narrower ranges (v3)

adverse selection
[5,7]: ↗ adverse selection =⇒ ↘ pool size (v2)

[5]: ↗ adverse selection =⇒ narrower ranges (v3)

Table 3: Factors Affecting Liquidity Provision Studied by Previous Works.
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We enhance these studies by empirically testing theoretical predictions and
verifying empirical findings in a setup with more variables to rule out confound-
ing. Our counterfactual v2 spread metric also allows us to test implications for
both Uniswap v2- and v3-like AMMs with only Uniswap v3 data. We thus se-
lect gas prices, returns, volatility, markout, and fee revenue as a baseline set of
factors, with markout as a proxy for adverse selection. We compute these vari-
ables at a daily frequency, using publicly available data from Dune Analytics.
We collect data on gas prices per transaction on each blockchain, token price
data from centralized exchanges (CEXs), and data on liquidity and swap events
occurring on each pool. More detailed descriptions of each variable follow.

Gas Prices. We compute the average gas price, in USD, of all transactions on
a given chain for the current day t.

Log-Returns. Let {pt} be the price ratio of the token pair traded on a pool
in our sample, in units of the other token per WETH and measured via CEX
prices, at day t. Log-returns at time horizon hr are then given by

LogReturnspairt = 100× log (pt/pt−hr
).

Volatility. We compute the annualized volatility of the token price ratio during
day t, using 15-minute intervals to obtain returns. This choice of time interval
captures the fine-grained intra-day price variability while reducing the influence
of microstructure noise present in shorter intervals.

Fee Revenue. The pro-rated fee revenue (or pool APR), computed by dividing
total fees accrued to a pool from a day’s swaps by the end-of-day pool TVL, is

FeeRevenuepoolt =
1

TVLt
× f

1 + f

∑
swaps s on pool in day t

pTI
τs (s) · q

TI(s)

where τs is the time of the swap and pTI
τs (s) and qTI(s) are the dollar price and

amount, respectively, of the token that swap s puts into the pool.6

Markout. Markouts capture the informativeness of trades on an exchange by
comparing the price of a trade to a benchmark price sometime after the trade,
in our case the pool’s mid-price, which indicates how favorable to the trader the
swap was in hindsight. Commonly used in traditional market microstructure,
markouts have also been used as a proxy for LVR [16],[21] in DEXs.

For each swap, we compare the swap price with the mid-price of the pool
determined by the “current tick” at time τs+hm, where τs is the time of a swap
s and hm is the time horizon for computing markout. The resulting difference in

6 As fees on Uniswap are determined by the token-in amount, and our swap event
tracker includes fees in qTI , we multiply the sum across swaps by f/(1 + f).
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price is then volume-weighted. We aggregate markouts for all swaps in a given
day and normalize by the end-of-day pool TVL:

Markoutpoolt =
1

TVLt
×

∑
swaps s on pool in day t

Ds · |qTI(s)| ·
(∣∣∣∣qTO(s)

qTI(s)

∣∣∣∣− ppoolτs+hm

)
where Ds = 1 if the swapper is selling WETH and Ds = −1 otherwise (i.e.

buying WETH), qTO(s) is the token-out amount for swap s, and ppoolτs+hm
denotes

the pool price, in units of the other token per WETH, at time hm after the
swap occurred. Under this definition, more positive (negative) values indicate
better (worse) LP profitability and thus less (more) adverse selection costs from
swappers.

4 Methodology

In AMMs with concentrated liquidity, market depth is not only influenced by
the TVL in the pool, but is also by how concentrated that liquidity is across
different price ranges. In this section, we introduce a novel method to measure
concentration, which we use to distinguish between the effects of TVL and liq-
uidity concentration on changes in effective spreads. This decomposition allows
us to better understand the mechanics of liquidity provision in concentrated
AMM pools and provide insights on LP behavior.

4.1 Decomposing Spread in Uniswap v3

The counterfactual v2 spread (Cv2S), is computed by looking at the TVL in a v3
pool at some given time, counterfactually considering a v2 pool with the same
TVL under no trading fees such that the spot price on the v2 pool aligns with
the CEX price at that time, and computing the effective spread as described in
Section 3 on the counterfactual pool. Note that this v2 pool is counterfactual
and does not correspond to any actual pool on Uniswap v2 for the token pair.
We align the counterfactual v2 pool’s reserves with the CEX price to simulate
the effect of arbitrageurs. A quick derivation (with details in Appendix A) shows
that the counterfactual v2 spread for a trade size of ∆ WETH can be expressed
as a function of token prices and TVL:

Cv2Spoolt = 104 × 4pETH
t

TVLpoolt

∆.

The quotient between the actual v3 and counterfactual v2 spreads, which we
call the spread quotient (SQ), is defined as

SQ :=
v3S

Cv2S
,

is a proxy for how well-concentrated the pool is around its mid-price: as the
spread quotient increases, the spread of the actual pool becomes higher relative
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to that of the counterfactual pool, meaning that liquidity is not well-concentrated
in the actual pool; conversely, as the spread quotient decreases, the spread of the
actual pool becomes lower, suggesting a more efficient concentration of liquidity.
Taking logarithms of the above equation reveals that

log v3S = log Cv2S+ log SQ.

This motivates the following three regression models:

log v3Spoolt+1 = β0 + β1 logGasPrice
chain
t + β2 LogReturns

pair
t + β3 Volatility

pair
t

+β4 log FeeRevenue
pool
t + β5 Markoutpoolt + γpool + δt + εpoolt+1 (1)

logCv2Spoolt+1 = β0 + β1 logGasPrice
chain
t + β2 LogReturns

pair
t + β3 Volatility

pair
t

+β4 log FeeRevenue
pool
t + β5 Markoutpoolt + γpool + δt + εpoolt+1 (2)

log SQpool
t+1 = β0 + β1 logGasPrice

chain
t + β2 LogReturns

pair
t + β3 Volatility

pair
t

+β4 log FeeRevenue
pool
t + β5 Markoutpoolt + γpool + δt + εpoolt+1 (3)

Due to skewed data, we take logarithms of the spread, GasPrice, and fee revenue.
The terms γpool and δt represent pool-level and day-level fixed effects, respec-
tively, while εpoolt+1 is the error term. The pool fixed effects capture time-invariant
characteristics specific to each pool, such as whether the pool is included in the
default Uniswap interface or other platform-specific settings that remain consis-
tent. Day fixed effects account for factors that affect all pools on a given date,
such as regulatory news or shifts in overall market sentiment. Standard errors are
clustered at the pool level to account for heteroscedasticity and autocorrelation
within pools over time.

4.2 Results and Discussion

We estimate the regression models with a trade size of ∆ = 1 WETH to compute
spreads, a return horizon hr of 1 day, and a markout horizon hm of 5 minutes.7

Prior to estimation, we normalize each independent variable in the data matrix
to have mean zero and standard deviation one, preserving the significance of
the coefficients while allowing for interpretable effect sizes.8 Our main results
are generally robust to modifications in ∆, hr and hm; specifically, we also have
considered ∆ ∈ {0.1, 10}, hr = 7 days, and hm = 1 hour. See the Online Ap-
pendix for the regression results under robustness checks.

7 The gas price and markout variable exhibits extreme values that could disproportion-
ately influence the regression results. To address this, we exclude pool-days where
the gas price markout exceeds 5 standard deviations from their respective means,
removing 56 pool-days from the sample.

8 For example, raw gas prices and markouts may have values that differ in orders of
magnitude, so normalizing makes the coefficients easier to interpret in measuring
the strength of the relationship between the independent and dependent variables,
while keeping t-statistics the same.
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Our decomposition implies that for each control, the estimated coefficients
from model (2) and (3) sum to the coefficient from estimating model (1), though
their significance levels may vary:

β̂log v3S
i = β̂log Cv2S

i + β̂log SQ
i ∀i.

We also regress the log-TVL at time t+ 1 on the independent variables at time
t for completeness. Since the counterfactual v2 spread is a function of price and
TVL, and fixed effects by pool and day are included, the coefficients from this
regression will equal to those from regression (2) times minus one:

β̂log Cv2S
i = −β̂logTVL

i ∀i.

Table 4: Baseline Regression Model (1) with Decomposition (2) + (3)

(1) (2) (3) (4)
log v3S logCv2S log SQ logTVL

logGasPrice 0.213 0.085 0.128∗∗∗ -0.085
(0.132) (0.126) (0.048) (0.126)

LogReturns -0.033∗∗∗ -0.009 -0.024∗∗∗ 0.009
(0.008) (0.006) (0.005) (0.006)

Volatility 0.401∗∗∗ 0.101∗∗ 0.300∗∗∗ -0.101∗∗

(0.053) (0.044) (0.027) (0.044)
log FeeRevenue -0.928∗∗∗ -0.237∗∗∗ -0.690∗∗∗ 0.237∗∗∗

(0.117) (0.074) (0.086) (0.074)
Markout -0.086∗∗∗ -0.169∗∗∗ 0.083∗∗∗ 0.169∗∗∗

(0.028) (0.019) (0.021) (0.019)

Observations 38440 38440 38440 38440
N. of groups 40 40 40 40
R2 0.313 0.078 0.435 0.078

Pool and day fixed effects are included; standard errors are clustered at the pool level.
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4 presents the estimated effects of factors on each dependent variable
specification. We omit β0 estimates for brevity. All factors except for GasPrice
significantly impact the overall effective spread. Specifically, v3 spreads are in-
creasing in volatility and is decreasing in returns, fee revenue, and markout.

The estimated coefficients on volatility, fee revenue, and markout for regres-
sion (2) are significant, suggesting that these factors have predictive power on
how TVL affects overall spreads. Higher fee revenue and better markouts against
swappers indicate more profitability for LPs, incentivizing them to provide liq-
uidity, thus reducing spreads. Since volatility is associated with LP losses (both
impermanent loss and LVR), higher volatility lowers liquidity provision.
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All factors are significant in regression (3), implying that they play an impor-
tant role in liquidity concentration. Higher gas prices increase rebalancing costs,
leading to “stale” positions that are not concentrated around current pool prices.
More volatility and negative markout (indicating informed trading) lead to LPs
widening their price ranges in order to, as explained in [5], create a more convex
pricing function that reduces losses to informed traders and volatile prices. Con-
versely, more fee revenue means that LPs can increase their profits by targeting
narrower price ranges with a larger concentration liquidity, according to [8]. Re-
call that putting a fixed amount of assets in a wider range lowers the amount of
“virtual liquidity” (see [2]) in the AMM, resulting in lower spreads.

For returns, we note that in traditional markets, liquidity tends to dry up
during market declines and periods of increased volatility [10,22]. This implies
that higher returns should positively predict market depth, while higher volatility
has a negative effect, which is consistent with our results, suggesting that this
stylized fact also carries over to decentralized markets with WETH as numéraire.

5 Extension: External Liquidity

The success of AMMs has lead to the proliferation of DEXs, with there being
over one hundred DEXs at the time of writing. The increase in competition
between DEXs introduces challenges such as the fragmentation of liquidity across
multiple liquidity pools and DEXs. In addition, DEX aggregators have created
new methods for order routing, using liquidity from various on-chain sources and
off-chain private market makers (PMMs). While these services improve trading
outcomes [3], PMMs take away fees from on-chain LPs.

5.1 Measuring External Liquidity

To better understand how these external liquidity sources might affect on-chain
liquidity provision, we introduce variables that (i) capture the volume of swaps
taking place on other DEXs and (ii) filled by private liquidity due to aggregator
routing. Using data from Dune Analytics, we track swap volume on other DEXs
and routed through aggregators, isolating swaps filled completely by private liq-
uidity by comparing transaction hashes with on-chain events. A simple heuristic
to identify these types of swaps is to take all swaps emitting events to aggregator
trackers that did not emit a swap event to on-chain data trackers.

Competitor Market Share. For a set D of DEXs (including the given DEX)
and a chain-pair, we compute the fraction of trading volume for that chain-pair
occurring outside of the given DEX on day t:9

CompetitorSharechain,pairt = 1− vt∑
D∈D vDt

9 Typically, market share for DEXs is evaluated in terms of trading volume. As a single
DEX can have several pools trading a pair on a chain, we require a platform-level
metric to assess competition and trader’s sentiments towards a given DEX.
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where vt and vDt are the swap volumes on the given DEX and DEX D in USD,
respectively, for a given chain-pair on day t.

Internalization Ratio. Given a set D of DEXs, a set A of aggregators, and a
chain-pair, we compute the proportion of swap volume routed or internalized by
private market makers active on A, henceforth referred to as “private volume,”
to the total on-chain plus private volume for that chain-pair on day t:10

Internalizationchain,pairt =

∑
A∈A vAt∑

D∈D vDt +
∑

A∈A vAt

where vAt is the private volume on aggregator A and vDt is the swap volume on
DEX D, both in USD, for a given chain-pair on day t.

Extended Regression Model. We take D as the 130 DEXs whose swap events
are tracked on Dune Analytics and A as the 13 aggregators whose swap events
are tracked on Dune Analytics. We add the competitor market share and inter-
nalization ratio variables to the baseline model and estimate the model with the
dependent variable specifications in models (1)–(3):

ypoolt+1 = β0 + β1 logGasPrice
chain
t + β2 LogReturns

pair
t + β3 Volatility

pair
t

+ β4 log FeeRevenue
pool
t + β5 Markoutpoolt + β6 CompetitorSharechain,pairt

+ β7 Internalization
chain,pair
t + γpool + δt + εpoolt+1 (4)

where y ∈ {log v3S, logCv2S, log SQ}.11

5.2 Results and Discussion

Table 5 displays the estimation results of each dependent variable using the
extended model that includes the competitor trading volume share and internal-
ization ratios. We find that a higher competitor share of the token pair predicts
higher effective spreads, while there is no significant explanatory power from in-
ternalization. Interestingly, the channels in which competitor share and internal-
ization affect market depth differ: the former affects liquidity via concentration
while the latter affects liquidity through value locked.

One possible explanation for this difference is that while providing liquidity
privately and to competing DEXs are both alternative opportunities for LPs to
earn fee revenue, providing liquidity privately is more discretionary, as PMMs can
choose which orders to fill, while providing liquidity to a competing DEX requires
the LP to take the opposite position of all trades routed to the DEX. The greater
risk involved in this option incentivizes LPs to widen price ranges, following the
same intuition as the discussion on volatility and markout. Conversely, the lesser

10 Since an aggregator could route trades to a variety of DEXs, we need D to include
all DEX that the aggregators in A may route to.

11 We performed robustness checks similar to those in footnote 4.
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risks involved in being a PMM mean that LPs choosing this option may not need
to widen ranges on existing position, instead directly withdrawing liquidity from
pools to serve as private liquidity.

Table 5: Model (4) with External Liquidity Variables

(1) (2) (3) (4)
log v3S logCv2S log SQ logTVL

logGasPrice 0.178 0.083 0.095∗∗ -0.083
(0.126) (0.120) (0.047) (0.120)

LogReturns -0.033∗∗∗ -0.009 -0.024∗∗∗ 0.009
(0.008) (0.006) (0.006) (0.006)

Volatility 0.379∗∗∗ 0.089∗∗ 0.290∗∗∗ -0.089∗∗

(0.052) (0.045) (0.026) (0.045)
log FeeRevenue -0.869∗∗∗ -0.201∗∗ -0.668∗∗∗ 0.201∗∗

(0.119) (0.079) (0.079) (0.079)
Markout -0.088∗∗∗ -0.169∗∗∗ 0.081∗∗∗ 0.169∗∗∗

(0.026) (0.019) (0.020) (0.019)
CompetitorShare 0.222∗∗∗ 0.088 0.134∗∗∗ -0.088

(0.065) (0.056) (0.031) (0.056)
Internalization 0.062 0.113∗∗∗ -0.051 -0.113∗∗∗

(0.082) (0.027) (0.070) (0.027)

Observations 38440 38440 38440 38440
N. of groups 40 40 40 40
R2 0.327 0.093 0.447 0.093

Pool and day fixed effects are included; standard errors are clustered at the pool level.
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

6 Conclusion

This study provides a valuable understanding of what drives liquidity on DEXs,
specifically within the Uniswap v3 protocol, having analyzed various factors and
their explanatory power in predicting future market depth. We use the coun-
terfactual v2 spread metric to decompose the drivers of overall effective spread,
distinguishing between impacts through TVL and liquidity concentration. Our
findings suggest that increased competition between DEXs and the presence of
private liquidity sources are significant contributors to liquidity fragmentation
on Uniswap v3, though they influence market depth via differing channels.

Our findings have significant implications for both LPs and DEX designers.
Understanding these dynamics is essential for LPs looking to optimize liquidity
provision strategies, and for DEX designers, these insights can guide the devel-
opment of features that address the adverse effects of liquidity fragmentation.
Our results on private liquidity are optimistic for the coexistence of DEX ag-
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gregators and on-chain liquidity, as internalization shows no significant effect on
overall market depth.

Future research could explore more elements of competition and internaliza-
tion in multi-DEX ecosystems, especially as aggregator services evolve. Further
studies on how alternative blockchain environments and emerging Layer 2 solu-
tions support affect liquidity provision can provide a broader perspective on the
scalability and sustainability of DEXs in a rapidly growing DeFi landscape.
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A Derivation of the Counterfactual v2 Spread

As a v2 pool between tokens X and Y aligned to CEX prices has equal values of
each token, the pool reserves (Xt, Yt) given TVL at time t should satisfy

(Xpool
t , Y pool

t ) =

(
TVLpoolt

2pXt
,
TVLpoolt

2pYt

)

where pXt and pYt are the CEX prices of tokens X and Y, respectively. A swap
buying ∆X tokens X for ∆Y tokens Y must satisfy (X −∆X)(Y +∆Y ) = XY .
Solving for ∆Y and scaling by ∆X yields the counterfactual ask price of

Apool
t =

∆Y

∆X
=

Y pool
t

Xpool
t −∆X

.

A swap selling ∆X tokens X for ∆Y tokens Y must satisfy (X+∆X)(Y −∆Y ) =
XY . Solving for ∆Y and scaling by ∆X yields the counterfactual bid price of

Bpool
t =

∆Y

∆X
=

Y pool
t

Xpool
t +∆X

.

The counterfactual v2 spread for a trade size of ∆ WETH is then

Cv2Spoolt = 104 × Apool
t −Bpool

t

1
2 (A

pool
t +Bpool

t )
= 104 × 4pETH

t

TVLpoolt

∆.
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