

What Drives Liquidity on Decentralized Exchanges? Evidence from the Uniswap Protocol CAAW'25

 $^1 \rm Columbia$ University $\ ^2 \rm Uniswap$ Labs $\ ^3 \rm Circle$ Internet Financial

INTRO	BACKGROUND	DATA	METHODOLOGY	RESULTS	SUMMARY
DISCLAIME	3.				

- The views and opinions expressed in this presentation are solely my own and do not reflect the views, positions, or policies of my employer or any affiliated organizations.
- This content is for informational purposes only and should not be considered financial advice.

INTRO	BACKGROUND	DATA	METHODOLOGY	RESULTS	SUMMARY
Motivatio	Ν				

- Liquidity plays a fundamental role in financial markets, affecting efficiency, stability, and execution costs.
- Decentralized exchanges (DEXs) introduce novel liquidity mechanisms via automated market makers (AMMs), distinct from traditional limit order books.
- Liquidity provision in DEXs is influenced by factors not yet fully understood—especially with the rise of concentrated liquidity and DEX aggregators.
- Understanding what drives DEX liquidity is essential for protocol designers, liquidity providers (LPs), and users in the evolving DeFi ecosystem.

INTRO	BACKGROUND	DATA	METHODOLOGY	RESULTS	SUMMARY
RESEARCH	Qs				

- What are the key on-chain and off-chain factors that drive liquidity on DEXs?
 - \Rightarrow Gas prices, token pair returns and volatilities, and in-pool fee revenue and markout have significant explanatory power on future market depth.
- Through what channels—TVL vs. concentration—do these factors affect market depth?
 - $\Rightarrow\,$ Gas price and returns act through liquidity concentration only.
 - \Rightarrow Volatility, fee revenue, and markout act through both channels.
- How does external liquidity (from competing DEXs and DEX aggregators) impact on-chain liquidity?
 - \Rightarrow Competitor share reduces liquidity via less concentration.
 - $\Rightarrow\,$ Internalization by aggregators has no significant negative impact on market depth.

INTRO	BACKGROUND	DATA	METHODOLOGY	RESULTS	SUMMARY
RESEARCH (Qs				

- What are the key on-chain and off-chain factors that drive liquidity on DEXs?
 - $\Rightarrow~$ Gas prices, token pair returns and volatilities, and in-pool fee revenue and markout have significant explanatory power on future market depth.
- Through what channels—TVL vs. concentration—do these factors affect market depth?
 - $\Rightarrow\,$ Gas price and returns act through liquidity concentration only.
 - \Rightarrow Volatility, fee revenue, and markout act through both channels.
- How does external liquidity (from competing DEXs and DEX aggregators) impact on-chain liquidity?
 - \Rightarrow Competitor share reduces liquidity via less concentration.
 - $\Rightarrow\,$ Internalization by aggregators has no significant negative impact on market depth.

INTRO	BACKGROUND	DATA	METHODOLOGY	RESULTS	SUMMARY
RESEARCH	Qs				

- What are the key on-chain and off-chain factors that drive liquidity on DEXs?
 - \Rightarrow Gas prices, token pair returns and volatilities, and in-pool fee revenue and markout have significant explanatory power on future market depth.
- Through what channels—TVL vs. concentration—do these factors affect market depth?
 - \Rightarrow Gas price and returns act through liquidity concentration only.
 - \Rightarrow Volatility, fee revenue, and markout act through both channels.
- How does external liquidity (from competing DEXs and DEX aggregators) impact on-chain liquidity?
 - \Rightarrow Competitor share reduces liquidity via less concentration.
 - $\Rightarrow\,$ Internalization by aggregators has no significant negative impact on market depth.

INTRO	BACKGROUND	DATA	METHODOLOGY	RESULTS	SUMMARY
RESEARCH	Qs				

- What are the key on-chain and off-chain factors that drive liquidity on DEXs?
 - \Rightarrow Gas prices, token pair returns and volatilities, and in-pool fee revenue and markout have significant explanatory power on future market depth.
- Through what channels—TVL vs. concentration—do these factors affect market depth?
 - $\Rightarrow\,$ Gas price and returns act through liquidity concentration only.
 - $\Rightarrow\,$ Volatility, fee revenue, and markout act through both channels.
- How does external liquidity (from competing DEXs and DEX aggregators) impact on-chain liquidity?
 - $\Rightarrow\,$ Competitor share reduces liquidity via less concentration.
 - \Rightarrow Internalization by aggregators has no significant negative impact on market depth.

INTRO	BACKGROUND	DATA	METHODOLOGY	RESULTS	SUMMARY
RESEARCH	Qs				

- What are the key on-chain and off-chain factors that drive liquidity on DEXs?
 - \Rightarrow Gas prices, token pair returns and volatilities, and in-pool fee revenue and markout have significant explanatory power on future market depth.
- Through what channels—TVL vs. concentration—do these factors affect market depth?
 - $\Rightarrow\,$ Gas price and returns act through liquidity concentration only.
 - $\Rightarrow\,$ Volatility, fee revenue, and markout act through both channels.
- How does external liquidity (from competing DEXs and DEX aggregators) impact on-chain liquidity?
 - $\Rightarrow\,$ Competitor share reduces liquidity via less concentration.
 - $\Rightarrow\,$ Internalization by aggregators has no significant negative impact on market depth.

INTRO	BACKGROUND	DATA	METHODOLOGY	RESULTS	SUMMARY
RESEARCH	Qs				

- What are the key on-chain and off-chain factors that drive liquidity on DEXs?
 - \Rightarrow Gas prices, token pair returns and volatilities, and in-pool fee revenue and markout have significant explanatory power on future market depth.
- Through what channels—TVL vs. concentration—do these factors affect market depth?
 - $\Rightarrow\,$ Gas price and returns act through liquidity concentration only.
 - $\Rightarrow\,$ Volatility, fee revenue, and markout act through both channels.
- How does external liquidity (from competing DEXs and DEX aggregators) impact on-chain liquidity?
 - $\Rightarrow~$ Competitor share reduces liquidity via less concentration.
 - $\Rightarrow\,$ Internalization by aggregators has no significant negative impact on market depth.

INTRO	BACKGROUND	DATA	METHODOLOGY	RESULTS	SUMMARY
TAKEAWAY					

- Liquidity \neq just TVL concentration matters.
- Volatility, fees, and informed trading shape depth.
- Competition between DEXs fragments liquidity.
- Aggregators don't kill DEXs they can coexist.

INTRO	BACKGROUND	DATA	METHODOLOGY	RESULTS	SUMMARY
LITERATUR	E				

• Liquidity Provision in DEXs

- Losses to arbitrageurs and cream-skimming: Lehar & Parlour (2024); Capponi & Jia (2025); Capponi, Jia & Zhu (2024)
- Concentrated liquidity:

Lehar, Parlour & Zoican (2024); Cartea et al. (2024); Fan et al. (2023)

- Our work: Multiple factors, broader scope (longer time, cross-chain coverage)
- Informed Trading on DEXs
 - Trade and liquidity events contain information: Capponi, Jia & Yu (2023); Klein et al. (2023)
 - Our work: Use markout as proxy for adverse selection shows negative effect on depth
- Off-Chain Liquidity and Aggregators
 - Aggregators improve execution (Bachu, Wan & Moallemi 2024)
 - Theory suggests harm (Chitra et al. 2024), but...
 - Our finding: No significant harm coexistence with on-chain liquidity is viable

INTRO	BACKGROUND	DATA	METHODOLOGY	RESULTS	SUMMARY
LITERATURE	C				

• Liquidity Provision in DEXs

- Losses to arbitrageurs and cream-skimming: Lehar & Parlour (2024); Capponi & Jia (2025); Capponi, Jia & Zhu (2024)
- Concentrated liquidity: Lehar, Parlour & Zoican (2024); Cartea et al. (2024); Fan et al. (2023)
- Our work: Multiple factors, broader scope (longer time, cross-chain coverage)

• Informed Trading on DEXs

- Trade and liquidity events contain information: Capponi, Jia & Yu (2023); Klein et al. (2023)
- \bullet Our work: Use markout as proxy for adverse selection shows negative effect on depth

• Off-Chain Liquidity and Aggregators

- Aggregators improve execution (Bachu, Wan & Moallemi 2024)
- Theory suggests harm (Chitra et al. 2024), but...
- $\bullet~Our~finding:$ No significant harm coexistence with on-chain liquidity is viable

INTRO	BACKGROUND	DATA	METHODOLOGY	RESULTS	SUMMARY
LITERATURE	C				

• Liquidity Provision in DEXs

- Losses to arbitrageurs and cream-skimming: Lehar & Parlour (2024); Capponi & Jia (2025); Capponi, Jia & Zhu (2024)
- Concentrated liquidity: Lehar, Parlour & Zoican (2024); Cartea et al. (2024); Fan et al. (2023)
- Our work: Multiple factors, broader scope (longer time, cross-chain coverage)

• Informed Trading on DEXs

- Trade and liquidity events contain information: Capponi, Jia & Yu (2023); Klein et al. (2023)
- Our work: Use markout as proxy for adverse selection shows negative effect on depth

• Off-Chain Liquidity and Aggregators

- Aggregators improve execution (Bachu, Wan & Moallemi 2024)
- Theory suggests harm (Chitra et al. 2024), but...
- \bullet $Our {\it finding:}$ No significant harm — coexistence with on-chain liquidity is viable

CONSTANT FUNCTION MARKET MAKERS (UNISWAP V2)

- Post-trade pool reserves must preserve level set of pricing function F (e.g. F(x, y) = xy)
- Example: $(10+5) \times (10-3.33) = 10 \times 10 \rightarrow$ can trade in 5 tokens X for 3.33 tokens Y

CONCENTRATED LIQUIDITY (UNISWAP V3)

- v2: liquidity is "active" at all prices can be capital inefficient
- v3: LPs choose in which price ranges to provide liquidity improves capital efficiency
- v3 pools track *current pool price* (black) and *total active liquidity* at each price (blue)

LIQUIDITY POOLS COVERAGE

Uniswap v3 data from May 5, 2021 to July 31, 2024 from the following pools:

$\mathbf{Pair} \ \backslash \ \mathbf{Network}$	Ethereum (L1)	Arbitrum (L2)	Optimism (L2)	Polygon (L2)
$\mathbf{CRV}-\mathbf{WETH}$	$30 \mathrm{~bps}$	$30 \mathrm{~bps}$	$30 \mathrm{~bps}$	$30 \mathrm{~bps}$
DAI–WETH	$30 \mathrm{~bps}$	$30 \mathrm{~bps}$	$30 \mathrm{~bps}$	$30 \mathrm{~bps}$
LDO–WETH	$30 \mathrm{~bps}$	$30 \mathrm{~bps}$	$30 \mathrm{~bps}$	$30 \mathrm{~bps}$
LINK-WETH	$30 \mathrm{~bps}$	$30 \mathrm{~bps}$	$30 \mathrm{~bps}$	$30 \mathrm{~bps}$
USDC-WETH	5, 30 bps	5, 30 bps	5, 30 bps	5, 30 bps
WBTC-WETH	5, 30 bps	5, 30 bps	5, 30 bps	5, 30 bps
WETH-USDT	5, 30 bps	5, 30 bps	5, 30 bps	5, 30 bps

Liquidity Pools Included in Sample by Pair, Network, and Fee Tier.

INTRO	BACKGROUND	DATA	METHODOLOGY	RESULTS	SUMMARY

Effective Spread

- Difference in quoted price between buying and selling a fixed amount Δ of WETH
- Quoted prices obtained via quoter contracts

Total Value Locked

• Dollar value of a liquidity pool's token reserves

INTRO	BACKGROUND	DATA	METHODOLOGY	RESULTS	SUMMARY

Effective Spread

- Difference in quoted price between buying and selling a fixed amount Δ of WETH
- Quoted prices obtained via quoter contracts

 $Total \ Value \ Locked$

• Dollar value of a liquidity pool's token reserves

Liquidity on WETH-USDC 5 bps Pools

Time series of liquidity metrics for $\Delta=1$ WETH in selected WETH-USDC pools.

INTRO	BACKGROUND	DATA	METHODOLOGY	RESULTS	SUMMARY

Histogram of effective spreads for $\Delta = 1$ WETH (full sample; split by blockchain type).

Counterfactual v2 Spread (Cv2S)

• What if the capital is in a V2 pool?

$$\mathsf{Cv2S}_t^{pool} = 10^4 \times \frac{4 p_t^{WETH}}{\mathsf{TVL}_t^{pool}} \Delta_{WETH} \quad \text{Derivation}$$

• Note: this does not correspond to any actual pool on Uniswap v2

Spread Quotient (SQ)

• The quotient between the actual v3 and counterfactual v2 spreads

$$SQ_t^{pool} := \frac{v3S_t^{pool}}{Cv2S_t^{pool}}$$

• Proxy for how well-concentrated the pool is around its mid-price

Counterfactual v2 Spread (Cv2S)

• What if the capital is in a V2 pool?

$$\mathsf{Cv2S}_t^{pool} = 10^4 \times \frac{4p_t^{WETH}}{\mathsf{TVL}_t^{pool}} \Delta_{WETH} \quad \text{Derivation}$$

• Note: this does not correspond to any actual pool on Uniswap v2

Spread Quotient (SQ)

• The quotient between the actual v3 and counterfactual v2 spreads

$$\mathsf{SQ}_t^{pool} := \frac{\mathsf{v3S}_t^{pool}}{\mathsf{Cv2S}_t^{pool}}$$

• Proxy for how well-concentrated the pool is around its mid-price

Well-concentrated pool — actual spread consistently below counterfactual v2 spread

 $Poorly\ concentrated\ pool$ — actual spread often similar to counterfactual v2 spread

Take logarithms:

$$\log v3S = \log Cv2S + \log SQ$$

Which motivates our regression models:

$$\log v3S_{t+1}^{pool} = \beta_0 + \beta_1 \log \text{GasPrice}_t^{chain} + \beta_2 \text{LogReturns}_t^{pair} + \beta_3 \text{Volatility}_t^{pair} + \beta_4 \log \text{FeeRevenue}_t^{pool} + \beta_5 \text{Markout}_t^{pool} + \gamma^{pool+\delta_t + \varepsilon_{t+1}^{pool}}$$
(1)

$$\log \mathsf{Cv2S}_{t+1}^{pool} = \beta_0 + \beta_1 \log \mathsf{GasPrice}_t^{chain} + \beta_2 \mathsf{LogReturns}_t^{pair} + \beta_3 \mathsf{Volatility}_t^{pair} + \beta_4 \log \mathsf{FeeRevenue}_t^{pool} + \beta_5 \mathsf{Markout}_t^{pool} + \gamma^{pool+\delta_t + \varepsilon_{t+1}^{pool}}$$
(2)

$$\begin{split} \log \mathsf{SQ}_{t+1}^{pool} &= \beta_0 + \beta_1 \log \mathsf{GasPrice}_t^{chain} + \beta_2 \operatorname{\mathsf{LogReturns}}_t^{pair} + \beta_3 \operatorname{\mathsf{Volatility}}_t^{pair} \\ &+ \beta_4 \log \mathsf{FeeRevenue}_t^{pool} + \beta_5 \operatorname{\mathsf{Markout}}_t^{pool} + \gamma^{pool+\delta_t + \varepsilon_{t+1}^{pool}} \end{split}$$

(3) Aug 16 / 23

INTRO	BACKGROUND	DATA	METHODOLOGY	RESULTS	SUMMARY
-------	------------	------	-------------	---------	---------

MAIN ANALYSIS PARAMETERS

- Trade size of $\Delta = 1$ WETH for spreads.
- Return horizon h_r of 1 day.
- Markout horizon h_m of 5 minutes.

Robustness Check

RO	BACKGROUND	DATA	METHODOLOGY	RESULTS	SUMMA
AIN RESUI	LT				
	(1) log v3S	(2) log Cv2S	(3) log SQ	(4) log TVL	
log GasPrice					
LogReturns					
Volatility					
$\log FeeReven$	Je				
Markout					
Observations N. of groups R^2	s				

INTRO	BACKGROUND	DATA	METHODOLOGY	RESULTS	SUMMARY
MAIN RESU	ΊLΤ				

	(1) log v3S	(2) log Cv2S	(3)log SQ	$^{(4)}_{\logTVL}$
$\log GasPrice$	0.213 (0.132)			
LogReturns	-0.033^{***} (0.008)			
Volatility	0.401^{***} (0.053)			
$\log FeeRevenue$	-0.928^{***} (0.117)			
Markout	-0.086^{***} (0.028)			
Observations	38440			
N. of groups R^2	$\begin{array}{c} 40 \\ 0.313 \end{array}$			

INTRO	BACKGROUND	DATA	METHODOLOGY	RESULTS	SUMMARY
MAIN DECL					

	(1) log v3S	(2) log Cv2S	(3)log SQ	$(4) \log TVL$
$\log GasPrice$		0.085	0.128***	
LogReturns		(0.126) -0.009	(0.048) - 0.024^{***}	
Volatility		$(0.006) \\ 0.101^{**}$	$(0.005) \\ 0.300^{***}$	
		(0.044)	(0.027)	
log i cencevenue		(0.074)	(0.086)	
Markout		-0.169^{***} (0.019)	$0.083^{***} \ (0.021)$	
Observations		38440	38440	
N. of groups R^2		$\begin{array}{c} 40\\ 0.078\end{array}$	$\begin{array}{c} 40\\ 0.435\end{array}$	

INTRO	BACKGROUND	DATA	METHODOLOGY	RESULTS	SUMMARY
MARY DEGR					

	(1) log v3S	(2) log Cv2S	(3)log SQ	(4)log TVL
$\log GasPrice$	0.213 (0.132)	0.085 (0.126)	0.128^{***} (0.048)	
LogReturns	-0.033^{***}	-0.009	-0.024^{***}	
Volatility	(0.008) 0.401^{***} (0.052)	(0.000) 0.101^{**} (0.044)	(0.003) 0.300^{***} (0.037)	
$\log FeeRevenue$	-0.928***	(0.044) -0.237^{***}	-0.690***	
Markout	$(0.117) \\ -0.086^{***} \\ (0.028)$	$(0.074) \\ -0.169^{***} \\ (0.019)$	$(0.086) \\ 0.083^{***} \\ (0.021)$	
Observations	38440	38440	38440	
N. of groups R^2	$\begin{array}{c} 40\\ 0.313\end{array}$	$\begin{array}{c} 40\\ 0.078\end{array}$	$\begin{array}{c} 40\\ 0.435\end{array}$	

INTRO	BACKGROUND	DATA	METHODOLOGY	RESULTS	SUMMARY
Mana Draw					

	(1) log v3S	(2) log Cv2S	(3)log SQ	(4)log TVL
$\log GasPrice$		0.085		-0.085
LanDatuma		(0.126)		(0.126)
LogReturns		(0.009)		(0.009)
Volatility		0.101^{**}		-0.101**
-		(0.044)		(0.044)
$\log FeeRevenue$		-0.237***		0.237^{***}
Markout		(0.074) - 0.169^{***} (0.019)		$(0.074) \\ 0.169^{***} \\ (0.019)$
		28440		28440
N of groups		38440 40		38440 40
R^2		0.078		0.078

111110	BRONGROOND	DHIN	METHODOLOGI	REBORID	50mmilli
MARKED DOGE					

	(1)	(2)	(3)	(4)
	log v3S	$\log Cv2S$	$\log SQ$	$\log TVL$
$\log GasPrice$	0.213	0.085	0.128^{***}	-0.085
	(0.132)	(0.126)	(0.048)	(0.126)
LogReturns	-0.033***	-0.009	-0.024***	0.009
	(0.008)	(0.006)	(0.005)	(0.006)
Volatility	0.401^{***}	0.101^{**}	0.300***	-0.101**
	(0.053)	(0.044)	(0.027)	(0.044)
$\log FeeRevenue$	-0.928***	-0.237***	-0.690***	0.237^{***}
	(0.117)	(0.074)	(0.086)	(0.074)
Markout	-0.086***	-0.169***	0.083***	0.169^{***}
	(0.028)	(0.019)	(0.021)	(0.019)
Observations	38440	38440	38440	38440
N. of groups	40	40	40	40
R^2	0.313	0.078	0.435	0.078

EXTENSION: EXTERNAL LIQUIDITY

Competitors' Market Share

• Volume of swaps taking place on other DEXs

$$\mathsf{CompetitorShare}_t^{chain, pair} = 1 - \frac{v_t}{\sum_{D \in \mathcal{D}} v_t^D}$$

Internalization Ratio

• Volume of swaps filled by private liquidity due to aggregator routing

$$\mathsf{Internalization}_t^{chain,pair} = \frac{\sum_{A \in \mathcal{A}} v_t^A}{\sum_{D \in \mathcal{D}} v_t^D + \sum_{A \in \mathcal{A}} v_t^A}$$

EXTENSION: EXTERNAL LIQUIDITY

Competitors' Market Share

• Volume of swaps taking place on other DEXs

$$\mathsf{CompetitorShare}_t^{chain, pair} = 1 - \frac{v_t}{\sum_{D \in \mathcal{D}} v_t^D}$$

Internalization Ratio

• Volume of swaps filled by private liquidity due to aggregator routing

$$\mathsf{Internalization}_t^{chain,pair} = \frac{\sum_{A \in \mathcal{A}} v_t^A}{\sum_{D \in \mathcal{D}} v_t^D + \sum_{A \in \mathcal{A}} v_t^A}$$

EXTENDED REGRESSION MODEL

$$\begin{split} y_{t+1}^{pool} &= \beta_0 + \beta_1 \log \mathsf{GasPrice}_t^{chain} + \beta_2 \mathsf{LogReturns}_t^{pair} + \beta_3 \mathsf{Volatility}_t^{pair} \\ &+ \beta_4 \log \mathsf{FeeRevenue}_t^{pool} + \beta_5 \mathsf{Markout}_t^{pool} + \beta_6 \mathsf{CompetitorShare}_t^{chain, pair} \\ &+ \beta_7 \mathsf{Internalization}_t^{chain, pair} + \gamma^{pool+\delta_t + \varepsilon_{t+1}^{pool}} \end{split}$$

where $y \in \{\log v3Spread, \log cfv2Spread, \log v3S/cfv2S\}$

INTRO	BACKGROUND	DATA	METHODOLOGY	RESULTS	SUMMARY
-------	------------	------	-------------	---------	---------

EXTENDED REGRESSION RESULT

	(1)log v3Spread	(2) log cfv2Spread	(3) log v3S/cfv2S	(4)log TVL
log GasPrice				
LogReturns				
Volatility				
$\log FeeRevenue$				
Markout				
CompetitorShare				
Internalization				
Observations N. of groups R^2				

INTRO	BACKGROUND	DATA	METHODOLOGY	RESULTS	SUMI
-------	------------	------	-------------	---------	------

EXTENDED REGRESSION RESULT

	(1)	(2)	(3)	(4)
	log v3Spread	log cfv2Spread	log v3S/cfv2S	$\log TVL$
log GasPrice	0.178	0.083	0.095^{**}	-0.083
	(0.126)	(0.120)	(0.047)	(0.120)
LogReturns	-0.033***	-0.009	-0.024***	0.009
	(0.008)	(0.006)	(0.006)	(0.006)
Volatility	0.379^{***}	0.089^{**}	0.290^{***}	-0.089**
	(0.052)	(0.045)	(0.026)	(0.045)
$\log FeeRevenue$	-0.869***	-0.201**	-0.668***	0.201^{**}
_	(0.119)	(0.079)	(0.079)	(0.079)
Markout	-0.088***	-0.169***	0.081^{***}	0.169^{***}
	(0.026)	(0.019)	(0.020)	(0.019)
CompetitorShare	0.222^{***}	0.088	0.134^{***}	-0.088
	(0.065)	(0.056)	(0.031)	(0.056)
Internalization	0.062	0.113^{***}	-0.051	-0.113***
	(0.082)	(0.027)	(0.070)	(0.027)
Observations	38440	38440	38440	38440
N. of groups	40	40	40	40
R^2	0.327	0.093	0.447	0.093

Model with External Liquidity Variables

INTRO	BACKGROUND	DATA	METHODOLOGY	RESULTS	SUMMARY
-------	------------	------	-------------	---------	---------

EXTENDED REGRESSION RESULT

	(1) $\log v3Spread$	$(2)\\ \log cfv2Spread$	(3) log v3S/cfv2S	(4)log TVL
$\log GasPrice$				
LogReturns				
Volatility				
$\log FeeRevenue$				
Markout				
CompetitorShare				
Internalization	$0.062 \\ (0.082)$			
Observations N. of groups R^2				

Model with External Liquidity Variables

INTRO	BACKGROUND	DATA	METHODOLOGY	RESULTS	SUMMARY
Summary					

- Liquidity on DEXs is driven by both capital (TVL) and concentration.
- Key drivers: gas prices, volatility, returns, fee revenue, and markout.
- Different factors operate through different channels:
 - Gas price and returns \Rightarrow affect liquidity *concentration*.
 - Volatility, fees, markout \Rightarrow affect both TVL and concentration.
- External liquidity matters:
 - Competition from other DEXs reduces concentration.
 - Aggregator internalization does not harm overall market depth.

METHODOLOGY

AND MORE IN THE PAPER

- Brian Zhu <bzz2101@columbia.edu>
- Kite Liu <kite.liu@uniswap.org>

DERIVATION

- Token X = WETH, Token Y = Other Token
- Ask price (buying WETH) on v2:

$$(X - \Delta_X)(Y + \Delta_Y) = XY \implies \frac{\Delta_Y}{\Delta_X} = \frac{Y}{X - \Delta_X} \coloneqq Ask$$

• Bid price (buying WETH) on v2:

$$(X + \Delta_X)(Y - \Delta_Y) = XY \implies \frac{\Delta_Y}{\Delta_X} = \frac{Y}{X + \Delta_X} \coloneqq Bid$$

• DEX price aligned to outside price: $Y = p^{WETH}X$

$$\mathsf{Cv2S}_t^{pool} = 10^4 \times \frac{Ask - Bid}{\frac{1}{2}(Ask + Bid)} = 10^4 \times \frac{4p^{WETH}\Delta_X}{p^{WETH}X + Y}$$

ROBUSTNESS CHECKS

- Small trade size ($\Delta = 0.1$ WETH)
- Large trade size ($\Delta = 10$ WETH)
- Weekly return horizons $(h_r \text{ of } 1 \text{ week})$
- Hourly markout horizons $(h_m \text{ of } 1 \text{ hour})$

Back

